
Introduction to Gitlab

Introduction to Gitlab

What is GitLab

GitLab is a complete DevOps platform, delivered as a single application. This makes GitLab

unique and creates a streamlined software workflow, unlocking your organization from the

constraints of a pieced together toolchain. Learn how GitLab offers unmatched visibility and

higher levels of efficiency in a single application across the DevOps lifecycle.

GitLab started as an open source project to help teams collaborate on software development.

GitLab’s mission is to provide a place where everyone can contribute. Each team member uses

our product internally and directly impacts the company roadmap. This exceptional approach

works because we’re a team of passionate people who want to see each other, the company,

and the broader GitLab community succeed and we have the platform to make that possible.

From about gitlab.

Target audience

The course material presented here is meant for a technically inclined person with a basic

proficiency in the Git source management system and an inclination to learn about combining

the power of Git with the versatility of GitLab.

Scope & Terminology

GitLab is tightly wedded, as the name suggests, to the git source code management system,

its concepts, command and terminology. It helps to be familiar with Git’s interpretations of

working directory, staging, repository, branch, tag, commit and revision among

others.

For some of the exercises git command are used on the command line to update the content of

the GitLab repositories. But for the most time the tutorial evolves GitLab’s web interface.

This document will not cover more advanced topics such as CI/CD scripts and advanced

GitOps topics.

Table 1. Terminology Summary

Application Term Description

Git working directory Location of the local copy of

the git repository

Git staging Cached files ready for commit.

Git repository General term for a git project.

https://about.gitlab.com/what-is-gitlab/

Git branch An working copy of the

repository.

Git tag A named reference to a

revision.

Git commit Annotated addition to the

repository.

Git revision ditto

GitLab merge request Request to include changes.

GitLab setup

GitLab setup prerequisites

For the course the following prerequisites have to be met:

• Recent version of docker.io

All docker commands are invoked without sudo. It is therefore assumed that the participants

user is part of the docker Unix group.

Gitlab docker setup

The examples in this tutorial are based on gitlab-ce (community edition). The docker image

and instruction on how to install it can be found on the gitlab docker hub page.

Table 2. Port mapping

Protocol Local Port Docker Port

HTTPS 8443 443

HTTP 8480 80

SSH 8422 22

https://hub.docker.com/r/gitlab/gitlab-ce/

Container start script with prefilled port numbers.

GITLAB_HOSTNAME=gitlab.local

GITLAB_HOME=${HOME}/var/work/gitlab

OMNIBUS=""

OMNIBUS+="external_url \"http://${GITLAB_HOSTNAME}:8480/\";"

OMNIBUS+="gitlab_rails['gitlab_shell_ssh_port'] = 8422;"

function start() {

 [[-d ${GITLAB_HOME}]] && mkdir -p ${GITLAB_HOME}

 docker run \

 --detach \

 --hostname ${GITLAB_HOSTNAME} \

 --env GITLAB_OMNIBUS_CONFIG="${OMNIBUS}" \

 --publish 8443:443 \

 --publish 8480:8480 \

 --publish 8422:22 \

 --name gitlab \

 --restart always \

 --volume ${GITLAB_HOME}/config:/etc/gitlab \

 --volume ${GITLAB_HOME}/logs:/var/log/gitlab \

 --volume ${GITLAB_HOME}/data:/var/opt/gitlab \

 gitlab/gitlab-ce:latest

}

start

The initial startup of the container is taking quite some time. Patience until the

first connection is required.

For convenience add gitlab.local to the /etc/hosts file

Add gitlab.local to the /etc/hosts file.

sudo sed -i \

 -e '/gitlab.local/d' \

 -e '$a\127.0.0.1 gitlab.local' \

 -e '$a\::1 gitlab.local' \

 /etc/hosts

Gitlab account setup

Configure admin account password

After starting the docker container open a browser and navigate to http://gilab.local:8480.

http://gilab.local:8480

Figure 1. Admin password setup

❶ Provide an admin password.

❷ Confirm the admin password.

❸ Finish process by clicking [Change your password]

Create user account

Once the admin password is in place a normal user account may be created.

Throughout the course the following values are assumed:

Property Value

First name Joe

Last name Developer

User name jdev

Email joe.developer@gitlab.local

Password topsecret

Role Software Developer

mailto:joe.developer@gitlab.local

Figure 2. User account creation

❶ Click on tab [Register]

❷ Joe for First name

❸ Developer for Last name

❹ jdev for User name

❺ joe.developer@gitlab.local for Email

❻ topsecret for Password

❼ Create accout by clicking [Register]

mailto:joe.developer@gitlab.local

Figure 3. Define role

❶ Select software developer for Role

❷ Define role by clicking [Get started!]

Congratulations the initial setup is complete!

Module 1 - User configuration

Before diving into working with GitLab the first thing to do is go through the user settings and

configure a few things that were missing from the initial setup such as adding privacy settings

and ssh public keys.

Goals

• Navigate the user setting

• Set privacy settings.

• Manage ssh public keys.

User profile configuration

For the purpose of the excercises conducted during this tutorial no particular changes in the

user profile need to be made but for better recognition the avatar, the privacy setting and the

ssh keys are being discussed here.

Navigate to the user' settings

Figure 4. Navigate to the user settings

❶ Click on the avatar on the right hand side and select Settings.

Change the avatar

Figure 5. Change the avatar

❶ On the left hand side navigation provides access to the various topics.

❷ To change the avatar click on [Choose file].

Figure 6. Upload new avatar from image file

For Joe Developer the chosen avatar is a construction worker with hard hat.

Review privacy settings

Under menu item Profile scroll down to the bottom of the page.

Figure 7. Privacy settings

❶ If so desired a user can hide certain information on the profile page from being viewed by

other participants. Click on the question mark ? to get a list of the information to hide. This

may be necessary on a publicly accessible instance of GitLab.

❷ This setting is only relevant for publicly accessable repositories. If your organization

maintains private repositories should changes made to said repositories be shown

anonymized.

Upload ssh public keys

Repositories on GitLab can be accessed via both the HTTPS protocol and the SSH protocol. To

prevent constant password prompts for each remote git operation and for better efficiency one

can upload a ssh public key to GitLab.

If ssh keys have already been generated previously skip the next step.

Generate a ssh public key on the command line

$ ssh-keygen -t ed25519 -f ~/.ssh/gitlab ❶
Generating public/private ed25519 key pair.

Enter passphrase (empty for no passphrase): ❷
Enter same passphrase again: ❸
Your identification has been saved in /home/uroesch/.ssh/gitlab

Your public key has been saved in /home/uroesch/.ssh/gitlab.pub

The key fingerprint is:

SHA256:hXWPmuLBU8fnrEYPNBoSDKwXaITn5Jn/Vtvdin6gJI4 uroesch@uroesch-puzzle

The key's randomart image is:

+--[ED25519 256]--+

| o.o.o. . . |

| . = o .+ o o |

| * + .o + * o |

| * .. + B = |

| o S + o o |

| ...+o..+ |

| +.+ +oo.. |

| E + o...o .|

| . .o... |

+----[SHA256]-----+

$ ls -l ~/.ssh/gitlab*

-rw------- 1 jdev jdev 464 Nov 9 12:09 /home/jdev/.ssh/gitlab ❹
-rw-r--r-- 1 jdev jdev 104 Nov 9 12:09 /home/jdev/.ssh/gitlab.pub ❺

❶ The ssh-keygen command generates a new key option -t specifies the format ed25519

is the easiest to handle. -f specifies the file location and name where to store the

generated key.

❷ The key can be secured with a passphrase which is highly recommended.

❸ Confirm passphrase.

❹ The generated private key. Note the file permission. Keep this file safe from other users.

❺ The public key is the one to be copied to GitLab. Open the file and copy the content.

Figure 8. Upload a ssh public key

❶ Navigate to menu item SSH Keys.

❷ Copy the content of the previously created ssh public key into the text area.

❸ Change the title of the key with a name that is uniquely identifiable.

❹ Optionally set an expiry date for the key.

❺ Click [Add key] to save the key.

❻ Previously uploaded key. Modifications are not possible one can only delete the entry.

Figure 9. Upload confirmation for ssh public key

Module 2 - Gitlab project

A GitLab project has at its center a git repository and a few services that evolve around said

repository. Such as an issue tracker, contributions from other developers via merge

requests and todo lists among others.

Goals

The creation of a new project is probably not as often used as the following excercises of

working with changes and merge request but it is of utmost importance to understand the

configuration and the implications of certain settings.

• Create a new GitLab project.

• How to navigate a project.

• Protect certain branches like master.

Create a new project

In the following steps a new personal public repository is created. The process of creating a

new project is assisted and straight forward.

The creation starts with clicking on the boxed plus sign left to the search field.

Figure 10. Create a new project from the top navigation bar

❶ Choose New Project to open the creation form.

Figure 11. Fill in the required information

❶ Use gitlab-project for Project name

❷ Is the base URL for accessing the repository, can’t be modified.

❸ Project slug is pre-filled base on the project name. May be modified but is usually left as is.

❹ Provide a project description. This gives visitors an overview of what the project is all about

in a few sentences.

❺ Choose Public as the visibility layer.

❻ Check Initialize repository with a README this creates a bare bone README.md

file in the root of the repository.

❼ To finish hit the [Create project] button.

Navigate new project

Right after the project is created the next screen is the project overview. For a first time visitor

the screen has quite a few elements and is probably confusing at first sight.

Here the various elements are explained shortly to provide and initial overview where to find

which functionality.

Figure 12. Initial project overview screen.

❶ Project name and visibility level marked by icon on the right hand side of the project name.

❷ Notification, star and fork buttons for other developers interested in the project.

❸ Git repository statistics with regards to number of commits, branches tags and storage

used.

❹ Branch navigation and file, branch and tag creation.

❺ Miscellaneous functionally such as file modification with Web IDE, archive downloads and

clone addresses for the repository.

❻ Current git revision number in shortened SHA1 format.

❼ File browser area, list and navigate files and directories in the project.

❽ HTML rendered content of README.md.

❾ Navigation of further functionality and access to project settings.

Clone project

GitLab has quite a few tools allowing for changes to the git repository data via the web

interface. But for most purposes the content of the git repository is worked on with an IDE or

on the command line externally.

In this exercise the previously created gitlab-project is cloned from the command line.

Navigate to the overview page of the project → http://gitlab.local:8480/jdev/gitlab-project

Figure 13. Copy project address for git clone operation.

❶ Press the [Clone] button.

❷ Copy the ssh address.

Change to terminal window and execute

$ git clone ssh://git@gitlab.local:8422/jdev/gitlab-project.git ❶
Cloning into 'gitlab-project'...

X11 forwarding request failed on channel 0

remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Receiving objects: 100% (3/3), done.

$ cd gitlab-project ❷
$ git log ❸
commit 3651309571108055dcafb3dacaf9678e90c91291 (HEAD -> master, origin/master,

origin/HEAD) ❹
Author: Joe Developer <joe.developer@gitlab.local>

Date: Mon Nov 9 12:10:30 2020 +0000

 Initial commit

❶ Clone the repository with the copied URL.

❷ Chang into the freshly created gitlab-project directory.

http://gitlab.local:8480/jdev/gitlab-project

❸ Inspect the commit history with git log.

❹ Verify the commit hash matches with the one displayed in the project overview.

To simulate different user behaviour in later modules the user information for this cloned

repository should be changed to Joe Developer.

$ git config --local user.name "Joe Developer" ❶
$ git config --local user.email "joe.developer@gitlab.local" ❷
$ git config --local --get-regexp 'user' ❸
user.name Joe Developer

user.email joe.developer@gitlab.local

❶ Set the user.name for the repository to 'Joe Developer'.

❷ Set the user.email for the repository to 'joe.developer@gitlab.local'.

❸ Confirm the settings.

Repository protection

Among the many settings available for a GitLab project at this stage the one that really

matters is the protection of the master branch.

Per default only the maintainer can push and as such also force push changes to the master

branch. This can be further restricted and no one make changes to master without proper

evaluation of the changes.

mailto:joe.developer@gitlab.local

Figure 14. Restrictive master branch settings.

❶ In the project navigate to Settings

❷ Click on Repository.

❸ Navigate to Protected Branches and hit the [Expand] button.

❹ Go to the box for master under allowed to push choose No one.

By protecting the master branch from direct pushes one can prevent fat-

fingered git pushes where master gets accidentally overwritten with content

from another branch. As a disclaimer this never happened to the instructor

guiding you currently, ever!!!

Module 3 - Gitlab group

A GitLab group is a way to structure and manage one or more related projects. Groups can

also be compared to folders on a file system.

Groups inhert permission to their subgroups and/or projects. Say if someone has access to a

group, they also get access to all the projects in the group.

This also includes the issues and merge requests for the projects in the group, and analytics

for the group’s activity.

Groups allow to communicate with all of the members at once.

Goals

The creation a new group and manage access to it.

• Create a new GitLab group.

• Manage access to the group.

• Basic Gitlab group settings.

Create a new group

In the following steps a new group is created. The process of creating a new group is assisted

and straight forward.

The creation starts with clicking on the boxed plus sign left to the search field.

Figure 15. Create a new group from the top navigation bar

❶ Choose New Group to open the creation form.

Figure 16. Fill in the required information

❶ Use acme as Group name

❷ Specify the Group URL, usually derived from the Group name.

❸ Add the optional Group description which helps to distinguish the group’s purpuse.

❹ Specify the Visibility level of the group. Defaults to Private.

Figure 17. Initial group overview

❶ Group navigation and configuration.

❷ Notification and new project or subgroup creation.

❸ Subgroup and projects tab navigation.

Group members

An integral part of groups is membership management.

The task is very straight forward but has a couple of Gitlab specific settings which need further

explanation.

Figure 18. Manage group members

❶ Members Navigation.

❷ Member invitation tab.

❸ Enter Gitlab member or email address of invitee.

❹ Enter role permission, default is Guest.

❺ For temporary group members add an expiration date of membership.

❻ List of existing members.

Group settings

Here quite a few settings for a Gitlab group this section focused showing the bare essentials.

Figure 19. Settings screen for group

❶ Choose New Group to open the creation form.

Figure 20. Advanced group settings

❶ Export a group to be used on a other gitlab instance.

❷ Change url. May have side-effects!

❸ Transfer group. May have side-effects!

❹ Remove group. No restore possible!

Module 4 - Forking projects

Forking is a way to keep a copy of a repository under the users own project. It is a way of

collaboration between different users and isolates the work each user commits until a feature,

bugfix or change has been completely tested or verified.

Goals

Contribute to various code bases by keeping the work performed on the repository completely

isolated to one’s own space.

• Create a new user

• Fork an existing project.

• Clone forked project.

• Branch local copy.

• Push changes to forked project.

Create new user (fork)

For discussing forking in detail a new user is required. Below are the instructions to do so.

Register user account

Open a new private or incognito browser window and navigate to the GitLab entry page →

http://gitlab.local:8480/

Click on the [Register] tab and create a user with the following data:

Property Value

First name Mary

Last name DevOps

User name mdevops

Email mary.devops@gitlab.local

Password topsecret

Role DevOps Engineer

 A ssh public key is not required the change are made over the http protocol.

When finished change the avatar to match the description.

http://gitlab.local:8480/
mailto:mary.devops@gitlab.local

Figure 21. Mary DevOps user profile page

Create forked project

User Mary DevOps is going to fork the project gitlab-project of user Joe Developer. The

steps are listed here.

Fork gitlab-project

As user Mary Devops navigate to URL → http://gitlab.local:8480/jdev/gitlab-project

http://gitlab.local:8480/jdev/gitlab-project

Figure 22. Fork the project gitlab-project

❶ In the upper right corner click the fork button to initiate the fork.

Figure 23. Select namespace for the fork.

❶ Select Mary DevOps' workspace for the fork.

Figure 24. Fork in progress screen

Figure 25. Forked project overview page.

Change content of forked project

With the project forked under Mary DevOps' namespace it is time to make changes to the

content.

Clone forked project

Navigate to URL → http://gitlab.local:8480/mdevops/gitlab-project/ Click on the [Clone]

button to display and use the Copy with HTTP URL → http://gitlab.local:8480/mdevops/

gitlab-project.git

Open terminal window to clone the project.

$ git clone http://gitlab.local:8480/mdevops/gitlab-project.git forked-project ❶
Cloning into 'forked-project'...

remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), 258 bytes | 258.00 KiB/s, done.

❶ Clone project to directory forked-project to not mix up the already cloned copy from

user Joe Developer.

To distinguish changes to the forked and original repository in case of a merge request. The

freshly created forked-project user settings are locally modified.

$ cd forked-project/

$ git config --local user.name "Mary DevOps"

$ git config --local user.email "mary.devops@gitlab.local"

$ git config --local --get-regex user

user.name Mary DevOps

user.email mary.devops@gitlab.local

Create branch

To work effectively encapsulate changes in git branches are recommended. When isolating

each change in a branch it is possible to work on multiple different changes without

independently. To follow this practice the first action in the forked-project repository is to

create branch documentation and change to it.

$ git checkout -b documentation ❶
Switched to a new branch 'documentation'

❶ Create and switch to branch documentation.

http://gitlab.local:8480/mdevops/gitlab-project/
http://gitlab.local:8480/mdevops/gitlab-project.git
http://gitlab.local:8480/mdevops/gitlab-project.git

Modify existing files

Under the documentation branch Mary modifies the README.md file adding information about

contributors.

$ git diff README.md ❶
diff --git a/README.md b/README.md

index 26a1ddf..3e727fd 100644

--- a/README.md

+++ b/README.md

@@ -1,3 +1,7 @@

 # gitlab-project

-This is a gitlab project for the introduction course.

\ No newline at end of file

+This is a gitlab project for the introduction course.

+

+## Contributors

+* Joe Developer

+* Mary DevOps

$ git commit -m "README: Add contributors" README.md ❷
[documentation 67b94b1] README: Add contributors

 1 file changed, 5 insertions(+), 1 deletion(-)

$ git log ❸
commit 67b94b1886449c14db44524b1b67c71fe2250662 (HEAD -> documentation)

Author: Mary DevOps <mary.devops@gitlab.local>

Date: Mon Nov 9 17:47:45 2020 +0100

 README: Add contributors

commit 3651309571108055dcafb3dacaf9678e90c91291 (origin/master, origin/HEAD,

master)

Author: Joe Developer <joe.developer@gitlab.local>

Date: Mon Nov 9 12:10:30 2020 +0000

 Initial commit

❶ Display changes made to file README.md prior to commiting.

❷ Commit the changes with message.

❸ Inspect the revision history with command log.

Push changes to project

With the changes made it is time to push them back onto the forked project.

$ git push origin documentation ❶
Username for 'http://gitlab.local:8480': mdevops ❷
Password for 'http://mdevops@gitlab.local:8480': ******* ❸
Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 8 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 361 bytes | 361.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

remote:

remote: To create a merge request for documentation, visit:

remote: http://gitlab.local:8480/mdevops/gitlab-project/-

/merge_requests/new?merge_request%5Bsource_branch%5D=documentation

remote:

To http://gitlab.local:8480/mdevops/gitlab-project.git

 * [new branch] documentation -> documentation ❹

❶ Explicitly provide the branch name documentation to push

❷ For the HTTP protocol the username is requested.

❸ The password must also be provided.

❹ The branch documentation is being created on the gitlab copy.

The username and password for HTTP operations can be cached with below

command. The timeout value is seconds. git config --global

credential.helper 'cache --timeout=864000'

Navigating once more to the project page of the fork → http://gitlab.local:8480/mdevops/

gitlab-project/ to view the changes in the interface.

Figure 26. The forked project’s page after the push

❶ Notification about the recently pushed branch documentation.

http://gitlab.local:8480/mdevops/gitlab-project/
http://gitlab.local:8480/mdevops/gitlab-project/

❷ Convenience button to [Create merge request] right away.

❸ The Switch branch/tag menu now contains branch documentation.

Switching the project’s view to branch documentation.

Figure 27. The branch documentation in the overview.

❶ Branch is set to documentation.

❷ The commit hash has changed and points to the latest commit in branch documentation.

Also note the avatar of the committer has changed to Mary’s.

❸ The content of the README.md is rendered with the commited changes.

The next step is to propose the changes to Joe Developer with a merge request. The procedure

is topic for the next module.

Summary

Summary of git commands used.

Item Description Resource

git

checkout -b

Create and switch to newly created branch. man git-

checkout

git clone Clone a remote repository or gitlab project. man git-clone

git config

--local

Apply configuration values to local repository. man git-config

git diff Display changes of uncommited modifications. man git-diff

https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-log

Item Description Resource

git log Display revision history. man git-log

git pull Fetch and then merge changes into the current working

branch.

man git-pull

git push Send local changes to the shared repository. man git-push

https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-pull
https://git-scm.com/docs/git-push

Module 5 - Merge requests

GitLab’s statement about merge requests:

Merge requests are a place to propose changes you’ve made to a project and discuss

those changes with others

Interested parties can even contribute by pushing commits if they want to.

Goals

Learn how to collaborate, review and evaluate changes to a repository before adding the

changed to the master branch. After a merge request has been put forward for review the

process is shown of how evaluate the change comment on particulars in the change and

request amendments and finally merge the code.

• Create a merge request from a forked project.

• Submit a merge request.

• Review changes in a merge request.

• Amend a merge request.

• Merge the request.

Create merge request

Initiate merge request

There is a few ways to initiate a merge request under GitLab. The variations and locations here

are listed below.

For a limited time after pushing changes to a repository a message with a button is display in

the upper half of the overview page.

Figure 28. After pushing a branch notification appears on the overview page.

❶ Click the [Create merge request] button to initiate.

Alternatively open a merge request via left hand side menu Repository → Commits

Figure 29. Create merge request via Commits

❶ Select the merge request branch e.g. documentation.

❷ Initiate via [Create merge request] button.

A third way is to go via the left hand menu Repository → Branches page.

Figure 30. Create merge request via Branches

❶ Click on [Merge request] on the branch to be merged.

Submit merge request

To submit the merge request there are a few questions to be answered generally the defaults

are fine most of the time.

Figure 31. Create merge request via Branches

❶ Change the source or / and destination branch for the merge request.

❷ Change the title of the merge request. By default the title is the first line of the commit

message.

❸ Add a description. Per default it is filled from the commit message starting at line 2 and

greater.

❹ Deletes the source branch after the merge is done. This is checked by default and prevents

out of date branches lingering around too long.

❺ When a merge request contains more than one commit the commits are squashed into a

single commit before applying to the target branch.

❻ Allows the owner of the target branch to adjust the content of the to the merge request

before merging.

❼ List of commits contained in the merge request.

❽ List of changes in diff format.

❾ Submit the merge request to the target branch owner.

Review merge requests

View merge request

Once the merge request is submitted the other members of the project can view, comment and

give suggestions for minor code changes.

Figure 32. Merge request right after submission.

❶ With [Edit] the title and message can be amended.

❷ [Mark as draft] signals the maintainer that the request is not yet ready for production and

requires more work before merger.

❸ Used to [Approve] the change. Under the GitLab community edition this is gratuitous. The

enterprise edition can enforce approval from stakeholders.

❹ Add comments to the request.

❺ [Close merge request] is another term for canceling the request. Note the request stays in

history and can be reopened if required.

Add comment

Other users in the group are encouraged to review the changes and add comments.

Commenting under the [Changes] tab a reviewer can mark the lines of code the comment is

referring to.

Figure 33. User Joe Developer adds a comment under changes.

❶ Switched to tab [Changes].

❷ Marking lines +5 ~ +7 as relevant to the comment.

❸ Writing message about the previously marked lines.

❹ If this change should be started as a review the [Start a review] button is clicked.

❺ In this particular case it is a comment so [Add comment now] is clicked.

Once the comment is submitted the others can chime in. Since it is only a comment Mary

DevOps is resolving the thread.

Figure 34. Mary DevOps views comment and resolves thread.

❶ Resolving the thread via the circled check mark.

❷ Alternatively via the button [Resolve thread].

Amend request

Maintainers have the option to make small amendments to the merge request. This can be

done entirely within the merge request page.

Figure 35. Create a suggestion

❶ Select target line.

❷ Click on the insert suggestion icon.

❸ Modify the selected code.

❹ [Start a review] to submit the suggestion.

Amendments are only available if the option for Allow commits from

member who can manage the target branch has been checked during

merge requestion submission.

Figure 36. Submit the suggestion as review

❶ To submit the suggestion for good click [Submit review]

Once the suggestion has been submitted other maintainers can further review the new

amendment and comment.

Figure 37. Suggestion ready for review or application.

❶ Clicking on [Apply suggestion] will create a new commit to the merge request.

❷ The diff of the suggestion is shown to make suggestion review easy.

❸ Further comments can be appended to the suggestion.

Figure 38. Applied suggestion.

❶ After application of the suggestion the [Applied] indicator is added.

Merge the request

Once the stakeholders are satisfied with the changes, suggestions and amendments the

request can be merged by a maintainer.

Figure 39. Merge the request

❶ Take note with the suggestion applied there are 2 commits. At the outset of the request

there was only one.

❷ Approval of a merge request is not a requirement but can be a helpful tool to determine

who has reviewed the change.

❸ With the applied suggestion the Squash commits checkbox can be activated to only have

one commit at merge time.

Post merge review

Eventually the merge request was merged in this particular case with the Squash commits

option checked.

It is now time to find out how the project repository changed.

Web UI post merge review

In the Web UI the changes are very subtle and the complexity of the process is masked.

Figure 40. Project overview page post merge.

❶ Although the option Squash commits was checked there are now 3 commits present in

the repository. It becomes more clear in as the topic evolves.

❷ The commit SHA1 is different to the one from Mary DevOps when submitting the merge

request.

❸ The changes including the suggestion from Joe Developer have are displayed in the

rendered README.md.

Figure 41. Review of the commits present.

❶ A new commit with a commit message never entered during the process is now the HEAD of

the repository.

❷ The commit hash changed compared to the submitted one. What happened?

git command post merge review

It is sometime easier to review the changes that look confusing in the Web UI on the command

line.

$ git pull origin master ❶
X11 forwarding request failed on channel 0

remote: Enumerating objects: 6, done.

remote: Counting objects: 100% (6/6), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 4 (delta 1), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (4/4), 513 bytes | 513.00 KiB/s, done.

From ssh://gitlab.local:8422/jdev/gitlab-project

 * branch master -> FETCH_HEAD

 3651309..5717883 master -> origin/master

Updating 3651309..5717883

Fast-forward

 README.md | 6 +++++- ❷
 1 file changed, 5 insertions(+), 1 deletion(-)

$ git log ❸
commit 57178833a3b5b0881becc92de93a45357e2c54ec (HEAD -> master, origin/master,

origin/HEAD)

Merge: 3651309 4e59b87 ❹
Author: Joe Developer <joe.developer@gitlab.local>

Date: Mon Nov 9 21:39:52 2020 +0000

 Merge branch 'documentation' into 'master'

 README: Add contributors

 See merge request jdev/gitlab-project!2

commit 4e59b87c9a4cd0d41837374e5ab257ecc67d5251

Author: Mary DevOps <mary.devops@gitlab.local>

Date: Mon Nov 9 21:39:52 2020 +0000

 README: Add contributors

commit 3651309571108055dcafb3dacaf9678e90c91291

Author: Joe Developer <joe.developer@gitlab.local>

Date: Mon Nov 9 12:10:30 2020 +0000

 Initial commit

❶ Pull the changes from the GitLab project to the previously created repository.

❷ The file README.md is updated during this procedure.

❸ The git log command displays a bit more information about commit 5717883. This is a

merge commit with multiple parents.

❹ The merge line display all the parents this particular commit has. Merge commits can be

prevented in under Settings → General → Merge requests → (*) Fast-forward

merge.

Unresolved directive in gitlab-tutorial.adoc - include::modules/06-module06/00-merge-

requests.adoc[]

Module 6 - CI/CD

CI/CD stands for Continuous Integration and Continuous Delivery and is an integral part of

GitLab. The module does teach the installation, setup and registration of a GitLab runner and

the creation of a simple pipeline with multiple stages.

Goals

project in the already existing GitLab project.

Most of the action is taking place on the command line with a few peeks at the result in the

GitLab frontend.

• The different types of runners.

• Installation and registration of a GitLab runner.

• CI/CD setup in GitLab.

• Creation of a simple pipeline.

• Creation of a multi stage pipeline.

Gitlab runner types

There are 3 types of runners.

Shared

Available to all groups and projects.

Group

Available to the whole group.

Specific

Assigned to one or more project.

Gitlab runner setup

Create a test project

The gitlab runner is written in Go which produces all in one binaries. There are are packages

and or binaries for all major operating systems available. The install instructions can be at this

URL https://docs.gitlab.com/runner/install/

For the purpose of this module the GitLab runner is not installed but only run on the command

line.

To start create a new repository called gitlab-runner-test either in the GitLab frontend or

as shown in the command line instructions below.

https://docs.gitlab.com/runner/install/

git init gitlab-runner-test

cd gitlab-runner-test

git remote add origin git@<gitlab-domain>:<user>/gitlab-runner-test.git ❶
touch .gitlab-ci.yml ❷
git add .gitlab-ci.yml ❸
git commit -m "Empty pipeline" ❹
git push origin main ❺

❶ Use the domain of your GitLab server followed by either your username or a group name.

❷ Create and empty .gitlab-ci.yml file.

❸ Add to local git repository.

❹ Commit the empty file.

❺ Push to GitLab. This will create a new project on the path specified with the git remote

command.

Register a specific runner

❶ Navigate to Settings → CI/CD.

❷ Expand the Runners tab.

❸ Take note of the sites URL.

❹ Copy the registration token.

Registration of the Runner

gitlab-runner register

Runtime platform arch=amd64 os=linux

Enter the GitLab instance URL (for example, https://gitlab.com/):

https://<gitlab-domain>/ ❶
Enter the registration token:

GR1348941zGxUXwUpzYSBT8syeg4R ❷
Enter a description for the runner:

[foobar-runner]: foobar ❸
Enter tags for the runner (comma-separated):

shell, linux ❹
Enter optional maintenance note for the runner:

Registering runner... succeeded runner=GR1348941zGxUXwUp

Enter an executor: custom, docker, shell, virtualbox, docker-ssh+machine,

kubernetes, docker-ssh, parallels, ssh, docker+machine, instance:

shell ❺
Runner registered successfully. Feel free to start it, but if it's running

already the config should be automatically reloaded!

Configuration (with the authentication token) was saved in

"/home/..../.gitlab-runner/config.toml"

❶ Provide the url for your GitLab setup.

❷ Provide the token from the registration page.

❸ Provide a unique name for the runner.

❹ Add tags to the runner.

❺ Choose the execution type for the runner. E.g. shell.

Start the runner

The runner is now configured for a single user. To start it simply type gitlab-runner run

and let it run in the foreground of the terminal.

$ gitlab-runner run

Runtime platform arch=amd64 os=linux

pid=297281 revision=133d7e76 version=15.6.1

Starting multi-runner from /home/uroesch/.gitlab-runner/config.toml... builds=0

WARNING: Running in user-mode.

WARNING: Use sudo for system-mode:

WARNING: $ sudo gitlab-runner...

Configuration loaded builds=0

listen_address not defined, metrics & debug endpoints disabled builds=0

[session_server].listen_address not defined, session endpoints disabled

builds=0

Initializing executor providers builds=0

Checking for jobs...nothing runner=nCtzPEyx

[...]

Simple pipeline

A simple pipeline is the most basic CI/CD Scripts possible. The pipeline created in this exercise

is the simplest possible with a specific runner.

.gitlab-ci.yml

Edit the .gitlab-ci.yml file with the content shown below.

first-pipeline: ❶
 tags:

 - shell ❷
 script:

 - echo "First pipeline" ❸

❶ Name of the task.

❷ The tag where to execute the instructions on.

❸ Command to execute.

Track status

Commit and push to the GitLab server.

git commit -m "First pipeline" .gitlab-ci.yml

git push origin main

Navigate to the project CI/CD page.

❶ Navigate to CI/CD → Pipelines in your project.

❷ See the pipeline status of the commit.

Staged pipeline

Building on the simple pipeline the scope is expanded to simulate several stages such as build,

test and deploy.

Stages in .gitlab-ci.yml

Edit the existing .gitlab-ci.yml file to look like the one below.

build:

 stage: build ❶
 tags: [shell]

 script: ['echo "Build project"']

test:

 stage: test ❷
 tags: [shell]

 script: ['echo "Test project"']

deploy:

 stage: deploy ❸
 tags: [shell]

 script: ['echo "Deploy project"']

stages: [build, test, deploy]

❶ Add the stage build.

❷ Second block is the test stage.

❸ The last block is deploying the code.

Track status

Commit and push to the GitLab server.

git commit -m "Staged pipeline" .gitlab-ci.yml

git push origin main

Navigate to the project CI/CD page.

❶ Each stage is represented by a circle with the status.

Clicking on the [passed] button shows the detailed view of the staged pipeline.

Navigating to the [Jobs] tab list each job for further inspection.

Module 7 - Submodules

Submodules is a way to keep your repositories DRY (Don’t Repeat Yourself). Instead of coping

code from another repository fully to our current workspace. The option of linking a repository

is both lightweight and scalable. The reason to use submodules is manifold. It can be to

include common code within the repository or to create a repository collecting independent

projects. A good use case is Puppet where each module is compartmentalized in its own git

repository. The same can be said for other configuration management software like Ansible.

Goals

Learn how to include and update a git submodule from another GitLab project in the already

existing GitLab project.

Most of the action is taking place on the command line with a few peeks at the result in the

GitLab frontend.

• Add a submodule to an existing repository.

• Inspect the .gitmodules file.

• Push changes to the repositories.

• Clone a repository with submodules.

Add a submodule to repository

Create a new project submodule under the GitLab frontend. It will be used as the submodule

repository for the following excercises.

❶ Name the repository submodule.

❷ Make the project publicly accessible.

❸ Create an empty README.md file.

git submodule add

With the submodule command there are subcommands that define the action to be executed.

For adding an existing repository as submodule unsurprisingly add is used to do so.

On the command line change into repository gitlab-project and issue.

$ cd gitlab-project ❶
$ git submodule add ../../jdev/submodule ❷
Cloning into '/home/jdev/var/tmp/gitlab-project/submodule'...

X11 forwarding request failed on channel 0

remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

❶ Change into the gitlab-project repository

❷ Issue to the submodule add command with a relative path to the freshly created

submodule project. Git will automatically fetch the source from the GitLab server.

Alternatively the full URL can be used. But when running CI/CD jobs with submodules this

is the recommended way.

Inspecting the repository’s status

$ git status

On branch master

Your branch is up to date with 'origin/master'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 new file: .gitmodules ❶
 new file: submodule ❷

❶ A new file called .gitmodules was created.

❷ The added submodule is also ready to be committed.

Inspecting the .gitmodules file

$ cat .gitmodules

[submodule "submodule"] ❶
 path = submodule ❷
 url = ../../jdev/submodule ❸

❶ The file is in INI format the same as the config file under the .git directory. Here with the

section submodule "submodule"

❷ The path is local path within the repository to the submodule.

❸ The url is verbatim what was provided on the command line.

Inspecting the content of the submodule

$ cd submodule/

$ ls

README.md ❶
$ git log ❷
commit cebacd281a26b1f0503522eb4344dce1226b9383 (HEAD -> master, origin/master,

origin/HEAD)

Author: Joe Developer <joe.developer@gitlab.local>

Date: Mon Dec 7 22:52:04 2020 +0000

 Initial commit

❶ The README.md created in the GitLab frontend is present.

❷ Once inside a submodule git commands only show the history and commits of the

submodule!

Push with submodules

git push

The command for pushing changes in the parent repository is the same as with a simple

repository without any submodule attached

The changes made by the submodule add command must be commited first then pushed.

Commit changes

$ git commit --all --message "Add submodule"

[master eb326f0] Add submodule

 2 files changed, 4 insertions(+)

 create mode 100644 .gitmodules

 create mode 160000 submodule

Push from master to branch add-submodule

$ git push origin master:add-submodule ❶
X11 forwarding request failed on channel 0

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 8 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 363 bytes | 363.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

remote:

remote: To create a merge request for add-submodule, visit: ❷
remote: http://gitlab.local:8480/jdev/gitlab-project/-

/merge_requests/new?merge_request%5Bsource_branch%5D=add-submodule

remote:

To ssh://gitlab.local:8422/jdev/gitlab-project.git

 * [new branch] master -> add-submodule ❸

❶ As the commit was done in master put direct pushes to master are restricted. The push is

creating a new branch called add-submodule in the remote repository.

❷ To merge the commit navigate to the URL shown and create a merge request.

❸ Git lets us know it created a new branch called add-submodule.

Modify file content

Modify both README files

$ echo '## Now with submodule' >> README.md ❶
$ echo "## I'm the submodule" >> submodule/README.md ❷
$ git status --short

 M README.md

 m submodule ❸

❶ Add a new headline to the parent’s README.md.

❷ Add a new headline to the submodule’s README.md.

❸ Status only reports a change to the submodule was made but does not provide any details

what exactly changed.

Commit and push the submodule first

$ cd submodule/ ❶
$ git commit -a -m "Add new content"

[master bec63ae] Add new content

 1 file changed, 1 insertion(+)

$ git push origin master:submodule ❷
Entering 'submodule'

X11 forwarding request failed on channel 0

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Writing objects: 100% (3/3), 268 bytes | 268.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

remote:

remote: To create a merge request for submodule, visit:

remote: http://gitlab.local:8480/jdev/submodule/-

/merge_requests/new?merge_request%5Bsource_branch%5D=submodule

remote:

To ssh://gitlab.local:8422/jdev/submodule

 * [new branch] master -> submodule

❶ Change into submodule and commit the change.

❷ Push to repo submodule with branch submodule.

Figure 42. Repository submodule after merge

❶ New revision after merge.

❷ Content has been updated.

Commit and push the submodule first

$ cd .. ❶
$ git commit -a -m "Add submodule header"

[master 1a44056] Add submodule header

 1 file changed, 1 insertion(+), 1 deletion(-)

$ git push origin master:submodule ❷
X11 forwarding request failed on channel 0

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 8 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 254 bytes | 254.00 KiB/s, done.

Total 2 (delta 1), reused 0 (delta 0), pack-reused 0

remote:

remote: To create a merge request for submodule, visit:

remote: http://gitlab.local:8480/jdev/gitlab-project/-

/merge_requests/new?merge_request%5Bsource_branch%5D=submodule

remote:

To ssh://gitlab.local:8422/jdev/gitlab-project.git

 * [new branch] master -> submodule

❶ Change back into superproject and commit the change.

❷ Push to repo gitlab-project with branch submodule.

Figure 43. Repository gitlab-project after merge

❶ New revision of submodule after merge.

Cloning with submodules

git clone

There is the --recursive flag for clone which recursively fetches the superproject as well as

all submodules.

Recursive clone

$ git clone --recursive \

 http://gitlab.local:8480/jdev/gitlab-project.git \

 gitlab-project-with-submodules ❶
Cloning into 'gitlab-project-with-submodules'... ❷
remote: Enumerating objects: 23, done.

remote: Counting objects: 100% (23/23), done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 23 (delta 10), reused 17 (delta 7), pack-reused 0

Unpacking objects: 100% (23/23), 2.46 KiB | 1.23 MiB/s, done.

Submodule 'submodule' (http://gitlab.local:8480/jdev/submodule) registered for

path 'submodule'

Cloning into '/home/uroesch/var/tmp/gitlab-project-with-submodules/submodule'...

❸
warning: redirecting to http://gitlab.local:8480/jdev/submodule.git/

remote: Enumerating objects: 7, done.

remote: Counting objects: 100% (7/7), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 7 (delta 0), reused 0 (delta 0), pack-reused 0

Submodule path 'submodule': checked out 'bec63ae43dd9ad434af8dcb087900424616de102'

❶ Clone into dedicated new directory gitlab-project-with-submodules

❷ Cloning the superproject repository gitlab-project first.

❸ Cloning the submodule submode second.

When not aware that the repository to be cloned contains submodules it can happen that the

--recursive option is not present during clone.

In such a case the submodules need to be updated from within the superproject.

Non-recursive clone

$ git clone http://gitlab.local:8480/jdev/gitlab-project.git \

 gitlab-project-non-recursive ❶
Cloning into 'gitlab-project-non-recursive'...

remote: Enumerating objects: 23, done.

remote: Counting objects: 100% (23/23), done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 23 (delta 10), reused 17 (delta 7), pack-reused 0

Unpacking objects: 100% (23/23), 2.46 KiB | 841.00 KiB/s, done.

$ cd gitlab-project-non-recursive ❷
$ git submodule update --recursive --init ❸
Cloning into '/home/uroesch/var/tmp/gitlab-project-non-recursive/submodule'...

warning: redirecting to http://gitlab.local:8480/jdev/submodule.git/

Submodule path 'submodule': checked out 'bec63ae43dd9ad434af8dcb087900424616de102'

❶ Clone into dedicated new directory gitlab-project-non-recursive

❷ Change into directory gitlab-project-non-recursive

❸ Cloning the submodules with command update and options --recursive and --init.

	Introduction to Gitlab
	Introduction to Gitlab
	What is GitLab
	Target audience
	Scope & Terminology
	GitLab setup
	GitLab setup prerequisites
	Gitlab docker setup
	Gitlab account setup

	Module 1 - User configuration
	Goals
	User profile configuration

	Module 2 - Gitlab project
	Goals
	Create a new project
	Navigate new project
	Clone project
	Repository protection

	Module 3 - Gitlab group
	Goals
	Create a new group
	Group members
	Group settings

	Module 4 - Forking projects
	Goals
	Create new user (fork)
	Create forked project
	Change content of forked project
	Push changes to project
	Summary

	Module 5 - Merge requests
	Goals
	Create merge request
	Review merge requests
	Post merge review

	Module 6 - CI/CD
	Goals
	Gitlab runner types
	Gitlab runner setup
	Simple pipeline
	Staged pipeline

	Module 7 - Submodules
	Goals
	Add a submodule to repository
	Push with submodules
	Cloning with submodules

