
Git Version Control Tutorial

Git Version Control Tutorial

What is git

Git is a free and open source distributed version control system designed to handle everything

from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses SCM

tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local branching,

convenient staging areas, and multiple workflows.

On a more technical level, git is a content-addressable file system. Meaning that at the core of

Git is a simple key-value data store. What this means is that you can insert any kind of content

into a Git repository, for which Git will hand you back a unique key you can use later to retrieve

that content.

Source https://git-scm.com/

Target audience

The course material is targeted at technically inclined person with a high Unix proficiency and

an interest of peaking under the hood bug had very little or no exposure to Git yet.

A bit of exposure to other version control systems can be beneficial but isn’t a requirement.

Scope & Terminology

While working with git you almost certainly encounter the terms porcelain and plumbing.

Initially git was a toolkit for a version control system many of the commands are meant for

user-unfriendly low level work. The low-level commands were designed be chained together,

not unlike the Unix pipe, to complete tasks. Hence they are referred to as plumbing. For most

git users the more user-friendly porcelain are used nearly exclusively.

For most part of this tutorial we stay within the realm of porcelain.

Table 1. Terminology Summary

Term Description

plumbing Low-level toolkit commands.

porcelain User-friendly front end commands.

https://git-scm.org

Concepts

File storage

Traditionally version control systems such as Subversion, CVS and Perforce are delta-based

version control systems. Meaning they are tracking files and changes to said files over time.

Version 1

File A

Version 2

File B

Δ1

File C

Δ1

Δ1

Version 3

Δ2

Δ2

Version 4

Δ3

Version 5

Δ2

Δ4

Figure 1. Delta based version control model

Git on the other hand sees it’s data more as a series of snapshots. So for git every commit is

not unlike a picture of the file content at a given time. If a files content has not change only a

reference to a snapshot is stored. Git is as such like a mini file system.

Version 1

File A

File B

File C

B

Version 2

A1 A1

C1

B

Version 3

C2 C2

Version 4

A2

B1

A2

Version 5

B2

C3

Figure 2. Git snapshots / file storage model

Location

Most git commands are performed locally. Compared to the CVCS (Centralizes Version Control

Systems) such as Subversion, git is blazingly fast. Git always retains the whole repository with

history locally. Only when sending changes to a remote site is network latency coming into

play.

https://subversion.apache.org/
http://www.nongnu.org/cvs/
https://www.perforce.com/

Integrity

SHA1 checksums are a integral factor in git. Everything is checksummed and then referenced

by that checksum. File corruption or tampering will not go unnoticed by git.

The 40 character long hex encoded SHA1 checksums are popping up all over when working

with git as they are used universally.

SHA1 hash example

d6a96ae3b442218a91512b9e1c57b9578b487a0b

Content

Git only works with files. Directories without a single file are not retained in git. Also files with

the same content are only stored once and then referenced.

Stages

An important part is to understand the state or stage a file in git can be in.

Stage Description

committed The content of the file is safely stored in the repository.

staged A modified file is marked for inclusion with the next commit.

modified A file git is aware of has been modified but is not commited to the

repository yet.

In a Git project the 3 stages are represented by: the .git directory (Repository), the working

directory and the staging area.

This results in the following workflow.

• Checkout a repository or branch aka git checkout.

• Modify a file in the working directory.

• Stage the file to be included during the next commit aka git add.

• Commit the changed file to the repository aka git commit.

Working
Directory

Staging
Area

add

.git directory
(Repository)

commit

checkout

Figure 3. Git stages and workflow

Family tree

Git commits, with a few exceptions, have always at least one parent commit. Remember this

concept as we dive deeper into the git universe. The parent determines where a certain

commit is located in the hierarchy of the repository.

Understanding the relations between commits is essential for understanding

more advanced topics like branching, rebasing and resetting among others.

But it also helps with troubleshooting issues.

ddd..

fourth
commit

ccc..

third
commit

parent
bbb..

second
commit

parent
aaa..

root
commit

parent

Figure 4. Git commit relation

Repositories

The repository of every git project is stored in the root of the working directory under the

.git directory. This provides a small overview of the content within the directory.

Content

A git repository consists of a few directories and files. After initializing it looks like the

directory tree below.

After the first commit or push to a remote repository more files and

directories appear.

.git
branches
config
description
HEAD
hooks
applypatch-msg.sample
commit-msg.sample

...
info
exclude

objects
info
pack

refs
heads
tags

Figure 5. Listing of .git directory after initialization

A overview of what the files and directories are use for in Git.

branches A slightly deprecated way to store URL shorthands used by git fetch,

git pull and git push.

config Repository specific configuration file.

description Used for software like git-web to describe the repository.

HEAD A reference to the refs/heads/ name space describing the currently

active branch.

hooks Hooks are customization scripts used by various Git commands.

info Additional information about the repository is recorded in this directory.

logs Missing from the figure above as there are no commits yet. Records of

changes made to refs are stored in this directory.

objects Object store associated with this repository see objects for more

information.

refs References are stored in sub directories of this directory.

Source gitrepository-layout man page

For a more in depth description of the repository layout consult the

gitrepository-layout manual page or read it online.

https://git-scm.com/docs/gitrepository-layout

Objects

There are 4 types of git objects stored within the objects directory. Namely:

Commits Contains the commit SHA1 hash, the tree SHA1 hash, the parent

commit, the `author’s name, the `committer’s name and the commit

message.

Trees Contain references to blob objects (files) or other tree objects

(directories) together with their file permission and their name.

Blobs Store the content of a given file.

Tags Are similar to commit objects but only refer to a commit object and lack

the tree and parent reference. But additionally there is the tag name.

object 65c707...

type commit

tag version_1.1

tagger Urs Roesch <****@bun.ch> ...

Bug fix for version 1

tag
version_1.1

tree b6c8ff...

parent 6b7857...

author Urs Roesch <****@bun.ch> ...

committer Urs Roesch <****@bun.ch> ...

Bug fixing

commit
65c707...

tree 89ff1a...

parent 5bc9b0...

author Urs Roesch <****@bun.ch> ...

committer Urs Roesch <****@bun.ch> ...

Release 1.0

parent
6b7857...

100644 blob 5716ca... app
040000 tree 257cc5... lib

tree
b6c8ff...

#!/bin/bash

application script
...

blob
5716ca...

100644 blob 9f4fc3... library.sh

tree
267cc5...

shell library
...

blob
9f4fc3...

Figure 6. Graphic showing all 4 types of git objects

Getting help

Git is very well documented and comes with extensive help accessible from the command line.

There are a few ways getting help with a git command.

Commands

To list all available porcelain commands git --help or git help is used.

$ git help

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>] ❶
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]

 [-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]

 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

 <command> [<args>]

These are common Git commands used in various situations: ❷

start a working area (see also: git help tutorial)

 clone Clone a repository into a new directory

 init Create an empty Git repository or reinitialize an existing

one

work on the current change (see also: git help everyday)

 add Add file contents to the index

 mv Move or rename a file, a directory, or a symlink

 restore Restore working tree files

 rm Remove files from the working tree and from the index

 sparse-checkout Initialize and modify the sparse-checkout

examine the history and state (see also: git help revisions)

 bisect Use binary search to find the commit that introduced a bug

 diff Show changes between commits, commit and working tree, etc

 grep Print lines matching a pattern

 log Show commit logs

 show Show various types of objects

 status Show the working tree status

grow, mark and tweak your common history

 branch List, create, or delete branches

 commit Record changes to the repository

 merge Join two or more development histories together

 rebase Reapply commits on top of another base tip

 reset Reset current HEAD to the specified state

 switch Switch branches

 tag Create, list, delete or verify a tag object signed with GPG

collaborate (see also: git help workflows)

 fetch Download objects and refs from another repository

 pull Fetch from and integrate with another repository or a local

branch

 push Update remote refs along with associated objects

'git help -a' and 'git help -g' list available sub commands and some ❸
concept guides. See 'git help <command>' or 'git help <concept>'

to read about a specific sub command or concept.

See 'git help git' for an overview of the system.

❶ Git’s common options.

❷ Git’s porcelain commands structured by topic.

❸ Further commands to display more extensive help.

Man pages

To display documentation there are 3 equivalent commands which display the Unix man page

for a given git command when invoked.

To show more help for the git init command one can either use man git-init, git

help init or git init --help. They all open the Unix man page for the topic at hand.

Shell completion

As there are countless options and switches for the various git commands one can easily lose

track. For various modern Unix shells such as bash or zsh completion packages exists.

When installed one can hit the Tab twice to find suggestions.

git init -- Tab Tab
--bare --no-... --no-template --quiet

--separate-git-dir= --shared --template=

Websites

The comprehensive documentation is also available on the net via the official git website’s

documentation section.

https://git-scm.org/docs/

Module 1 - Configuration

As with any advanced software the default values might work for very small tasks but as

proficiency rises the need to divert from the default values becomes a necessity. This module

scratches only on the surface the git configuration. But the most often used values are

certainly covered. After completion of this module one can:

Goals

• Show configuration values.

• Set contact information.

• Differentiate system, global and local configurations

• Useful configuration options.

With recent versions of git a base configuration for the user’s email and full

name is required.

List git configuration

Up till now the first repository contains only a couple of files and is used locally. The

configuration is therefore in pristine condition. Let’s see how to show the current state.

list

$ git config --list

core.repositoryformatversion=0 ❶
core.filemode=true ❷
core.bare=false ❸
core.logallrefupdates=true ❹

Generally this is the default configuration for a working directory repository. You may skip the

explanation of each item as it is not very important at this point in time.

❶ 0 is the original git repository format. With git 2.7 extensions were introduced if such

extensions exist the version can be bumped to 1.

❷ filemode is generally set to true on Unix like systems but for say Windows where the

traditional Unix file permissions are not used it should be set to false. This prevents

mismatches of file permission in the index and on disk.

❸ Bare repositories are mostly used on sharing platforms such as GitHub, GitLab or

Bitbucket. The structure is different from a working repository.

❹ For working directories the default is true as all changes should be logged. Bare

repositories should have a value of false.

This is a very minimal configuration indeed. So let’s see how one extend it.

Set contact information

The configuration items that should be set is the user.name and user.email. As the name

suggests these settings are specific to the actual git user as such need to be set individually.

user.name & user.email

$ git config --global --add user.name "Urs Roesch" ❶
$ git config --global --add user.email "****@bun.ch" ❷
$ git config --list

user.email=****@bun.ch

user.name=Urs Roesch

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true

❶ Adding the user’s full name global configuration file.

❷ Adding the user’s email to the global configuration file.

System, global and local?

Peeking into the man page of git-config or searching the Internet for git config values

quite often the switches --global or --local appear. Shedding a bit light into this matter is

the purpose of this section.

File location

system System wide configuration located usually under /etc/gitconfig.

global User wide configuration located under ${HOME}/.gitconfig.

local Repository only configuration under .git/config.

Important here is that configuration values in local context take precedence

over global ones. And global values override system ones.

How does it work?

First with the information about file location take a peek into the two configuration that exist

so far. Namely global with the email addresses and local in the repository.

$ cat ~/.gitconfig

[user]

 email = ****@bun.ch

 name = Urs Roesch

$ cat .git/config

[core]

 repositoryformatversion = 0

 filemode = true

 bare = false

 logallrefupdates = true

The format of the files is ini based. A very popular key value store. Which can be changed

with a text editor. The sections user and core are being prepended to the keys like email or

filemode resulting in user.email or core.filemode.

There is no overlap in the two configurations. The global configuration is simply appended to

the local one.

user.email=****@bun.ch
user.name=Urs Roesch

global
~/.gitconfig user.email=****@bun.ch

user.name=Urs Roesch
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

git config --list

core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

local
.git/config

Figure 7. Combining the global and local configuration with no overlap.

To use a real world example. While having a user.name and user.email configured globally,

for GitHub repositories the user.email should be matching the one registered at the site.

In the below figure the user.email key from local takes precedence over the one from

global.

https://en.wikipedia.org/wiki/INI_file

user.email=****@bun.ch
user.name=Urs Roesch

global
~/.gitconfig user.email=****@gmail.ch

user.name=Urs Roesch
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

git config --list

user.email=****@gmail.ch
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

local
.git/config

Figure 8. Combination with local overriding user.email.

Useful configuration options

These are basic configuration settings in git but they can make a large difference in the overall

user experience.

core.editor

By default git uses the predefined system editor via the VISUAL or EDITOR environment

variable. Depending on preference this may not what you like editing in.

git config --global core.editor emacs ❶

❶ Now git will use Emacs every time interactive input is required regardless of the systems

editor settings.

core.pager

Git uses less as its default pager for commands that may produce multi page output. Such as

log, diff or show. Depending on preference one want to use more or no pager at all.

git config --global core.pager '' ❶

❶ Switches off the pager altogheter.

color.ui

With newer versions git colors more and more of its output. To completely switch of the

colored output the color.ui has to be set to false.

git config --global color.ui false ❶

❶ Switch off all colored output. The default is auto probing for terminal color support. A

value of always send color to the terminal regardless of capabilities.

color.*

A more fine grained approach with color is to use the settings to only switch off certain git

command’s color output. Possible values for the keys listed below are false to disable, true

to enable and always to enable regardless of terminal capabilities.

$ git config --list color. Tab Tab
color.advice

color.advice.hint

color.blame.highlightRecent

color.blame.repeatedLines

color.branch

...

credential.<url>

Assuming a remote repository is being used over HTTPS and the username of the repository

differs from your local login on the machine there is a way to add the username to the

configuration.

git config --local credential.https://git.bun.ch/repo/foobar.git urs.roesch ❶

❶ Sets the username of the URL https://git.bun.ch/repo/foobar.git to

urs.roesch.

credential.helper

If git is only usable over HTTPS typing the login credentials every time becomes tiresome.

There is a nifty configuration setting caching the credentials for a set period.

git config --global credential.helper 'cache --timeout=86400' ❶

❶ Caches the HTTPS credentials for 24 hours.

Summary

For brevity here are the configuration options in a tabular format.

Item Description Values

list List the actual configuration for the repository N/A

https://git.bun.ch/repo/foobar.git

Item Description Values

user.name Set the user’s name used in the commit message. String

user.email Set the user’s email address used in the commit

message.

String

--global Set the configuration for each repository of the user on

the machine.

N/A

--local Set the configuration only for the current repository. N/A

core.editor Change the default editor for interactive input. String

core.pager Change the pager for commands with output longer

than one page.

String

color.ui Change the color output for the whole of git. false, true, always

color.branch Change the color output for branching output. false, true, always

color.diff Change the color output for diff output. false, true, always

color.interac

tive

Change the color output for interactive input. false, true, always

color.status Change the color output for status output. false, true, always

credential.<u

rl>

Add user name for a specific URL. String

credential.he

lper

Add a credential helper for caching passwords for

HTTPS URLs.

String

Module 2 - Local Repository

Goals

This is were the rubber hits the road. After all the theory about Git this is the first hands-on

part. After completion of this module the student can confidently do:

• Create a new git repository.

• Create and stage files.

• Commit files.

• Move and remove files.

• View the status of the repository.

• Display the log.

• Excluding files from Git.

Create a local repository

As already mentioned under location for the most part Git operates on local storage. In order

to create our first repository the only thing required is the git binary. Starting with a clean

slate the only other requirement is an empty directory.

The same steps performed here can be applied to an already existing project but it is better to

complete module 1 before doing so.

Git commands always start with git followed by a command, in this case

init, then the arguments. To get more information about a git command use

git help <command>.

git init

$ mkdir git-repo

$ cd git-repo

$ git init ❶
Initialized empty Git repository in .../git-repo/.git/

❶ The command for creating or better initializing is git init. That’s it, it is really that easy!

Want to know what exactly what git put into the .git directory have a look at

the content of the initial tree

With the empty repository in place it is important to recall the three stages Git operates in.

• modified (Working Directory)

• staged (Staging Area)

• commited (Repository)

Working
Directory

Staging
Area

add

.git directory
(Repository)

commit

checkout

Figure 9. Git stages and workflow

The following excersices guides step by step through changing files, staging them and commit

them to the repository.

Staging files

git status

$ echo "This is my first file in a git repo" > first-file.txt ❶
$ git status ❷
On branch main ❸

No commits yet

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 first-file.txt

nothing added to commit but untracked files present (use "git add" to track) ❹

❶ Create a file with content.

❷ Execute the status command. Git has recognized the file but does not yet track it.

❸ Status' first line shows the branch name. In this case main.

❹ Git tries to inform you about possible next steps like in this case to use git add.

Working
Directory

Staging
Area

add

.git directory
(Repository)

commit

checkout

Figure 10. The created file has a status of Working Directory but is not yet tracked.

git add

$ git add . ❶
$ git status

On branch main

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage) ❷

 new file: first-file.txt ❸

❶ Add all files to the staging area. The dot . recurses through all sub-directories. Only adding

a single file is done with git add first-file.txt. Shell wildcards also work e.g. git

add *txt.

❷ Note the message about taking a file out of cache should you have mistakenly commited to

stage.

❸ Git now knows about the file first-file.txt. But remember it has not been yet

commited!

Working
Directory

Staging
Area

add

.git directory
(Repository)

commit

checkout

Figure 11. The created file is now tracked in the Staging Area.

If a file was added to the staging area by mistake it can be brought back to

working directory status with command git rm --cached <file> prior to

commiting.

Commit files

With files in staging it is time to actually put them into the repository we take now a snapshot

of the repository.

git commit

$ git commit -m "My first git commit" ❶
[main (root-commit) 307c1a0] My first git commit ❷
 1 file changed, 1 insertion(+) ❸
 create mode 100644 first-file.txt ❹
$ git status

On branch main

nothing to commit, working tree clean ❺

❶ A commit message is always required. With the -m aka message argument it is passed via

the command line. Otherwise an editor would appear prompting for input.

❷ The root-commit is the first commit and does not have a parent.

❸ Git is showing file and change statistics for the commit.

❹ Newly created files are displayed with the file permission.

❺ The repository is now clean, meaning there are no pending changes in the working

directory or the staging area.

Working
Directory

Staging
Area

add

.git directory
(Repository)

commit

checkout

Figure 12. The created file is now commited to the Repository.

Move & remove files

Once a file is under Git’s control changing the file name or moving to a different directory

should be done with git commands modelled after their Unix counterparts.

git mv

Moving a file to a new directory or giving it a new name can be done by the git mv command

the syntax is modeled afer the Unix mv command.

$ git mv first-file.txt first_file.txt ❶
$ git status

On branch main

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 renamed: first-file.txt -> first_file.txt ❷

❶ Move a commited file to a new location / name.

❷ The file has been put back into the staging area. With the next commit it will be put back

into commited state.

git rm

Removing a tracked or commited file is done with the git rm command like with moving files

the command is modeled afer the equivalent Unix command.

$ git rm first_file.txt ❶
rm 'first_file.txt'

$ git status

On branch main

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 deleted: first_file.txt ❷

❶ Remove the file from the repository. After rm is issued the file is put into the staging area.

For a file not yet commited removal from the staging area can be done with git

--cached rm <file>.

❷ The file will be removed from the repository with the next commit.

Removing an already commited file will not show the file for any consecutive

revision going forward. However the file can still be retrived from revisions

prior to the removal. If the file in question contains sensible information seek

help from a Git Ninja with amazing Git Fu skills to erase it!

Inspecting log and objects

After commiting the first file one should know how to display the commit history or log. There

is a multitude of options that can be used to customize the output. While showing every option

is out of scope a few very useful ones are shown. Additionally the show command used for

inspecting objects is briefly discussed.

git log

First up the history is inspected.

$ git log

commit 307c1a0a537758f3d4b6ecea98e9af2e5d0b7b88 (HEAD -> main) ❶
Author: Urs Roesch <****@bun.ch> ❷
Date: Sun Aug 26 12:09:57 2018 +0200 ❸

 My first git commit ❹

With only one commit in the repository there is only a single entry shown. As the repository

accumulates commits the number of log entries is also growing.

❶ The first line is the most important it shows the commit’s unique identifier a hex encoded

SHA1 hash. In newer version of git the log is decorated, meaning shows additional

information e.g. the HEAD of the repository.

❷ The authors name. Changing this information is discussed in module 2.

❸ The date of the commit.

❹ The commit message.

To show what files are part of the commit the --stat argument is used.

$ git log --stat

commit 307c1a0a537758f3d4b6ecea98e9af2e5d0b7b88 (HEAD -> main)

Author: Urs Roesch <urs++git@bun.ch>

Date: Sun Aug 26 12:09:57 2018 +0200

 My first git commit

 first-file.txt | 1 + ❶
 1 file changed, 1 insertion(+) ❷

❶ List of files that have been change and the number of lines added + or subtracted -.

❷ Summary of the accumulated changes. The same message shown during the commit.

While not really useful at this stage in the project with many commits one can squeeze the log

output into a single line.

$ git log --oneline

307c1a0 (HEAD -> main) My first git commit ❶

❶ On one line the first 7 positions of the commit followed by the decoration and trailed by the

commit message.

git show

To inspect the commmits further the show command is used. By definition if no commit is

being passed HEAD is assumed.

The show command has many command line switches so the two commands discussed here

are only a tiny fraction of its capabilities.

$ git show

commit 307c1a0a537758f3d4b6ecea98e9af2e5d0b7b88 (HEAD -> main)

Author: Urs Roesch <urs++git@bun.ch>

Date: Sun Aug 26 12:09:57 2018 +0200

 My first git commit

diff --git a/first-file.txt b/first-file.txt ❶
new file mode 100644

index 0000000..e7e0b37

--- /dev/null

+++ b/first-file.txt

@@ -0,0 +1 @@

+This is my first file in a git repo

❶ The show displays the head of the commit up to the commit message the same way as git

log. But then a diff command appears listing the changes commited. The assumption is

made one understands the output from diff.

The --stat switch does only display statistics and skips the diff output.

$ git show --stat ❶
commit 307c1a0a537758f3d4b6ecea98e9af2e5d0b7b88 (HEAD -> main)

Author: Urs Roesch <urs++git@bun.ch>

Date: Sun Aug 26 12:09:57 2018 +0200

 My first git commit

 first-file.txt | 1 +

 1 file changed, 1 insertion(+)

❶ Now to confuse everyone the git show --stat command displays the exact same

output as the previous discussed git log --stat. This is true at this stage because

there is only one commit in the repository. And while log is consulting the log show works

with commit IDs passed to it. Adding one more commit and the outcome is different.

Excluding files

Depending on the project there are files that should not be included in the repository as they

can be reproduced by a build script. Or temporary editor file that try to sneak into the

repository.

.gitignore

The .gitignore file can be placed in any given directory within the project with the

exception of the .git repository. A .gitignore file in the top-level directory of the

repository applies to all files and sub-directories in the repository. Patterns from a

.gitignore file further down in the tree take precedence.

https://en.wikipedia.org/wiki/Diff#Unified_format

$ mkdir tmp

$ echo temporary > tmp/tmp.txt ❶
$ git status --short

?? tmp/ ❷
echo tmp > .gitignore ❸
git status --short

?? .gitignore ❹

❶ Creating a dummy file in the tmp directory.

❷ Check the status of the repository in short form. The two leading question marks indicate

git has found new files in the tmp directory.

❸ The tmp directory should exist but not be tracked by git. Hence a .gitignore file in the

top-level with the content tmp is created.

❹ Once more running a status check shows the files in tmp are no longer considered.

However the .gitignore file is not marked as untracked.

While not strictly necessary it usually makes sense to include the .gitignore

file in the repository.

$ git add .gitignore ❶
$ git commit -m "Excluding files with .gitignore" ❷
[main 33d3825] Excluding files with .gitignore

 1 file changed, 1 insertion(+)

 create mode 100644 .gitignore

$ git log --oneline ❸
33d3825 (HEAD -> main) Excluding files with .gitignore

307c1a0 My first git commit

❶ Stage the .gitignore file.

❷ Commit everything staged.

❸ Verify the with git log. Notice the HEAD has moved to the commit. And two commits are

shown.

The .gitignore uses a pattern format very similar to Unix shell globs. An example file shown

below provides an overview of possible patterns.

$ cat .gitignore

*.a ❶

!lib.a ❷

[0-9]*.html ❸

/TODO ❹

build/ ❺

doc/*.txt ❻

doc/**/*.pdf ❼

❶ Ignore all files ending with .a.

❷ Do track lib.a, even though you’re ignoring .a files above.

❸ Ignore html files starting with a digit.

❹ Only ignore the TODO file in the current directory, not subdir/TODO.

❺ Ignore all files in any directory named build.

❻ Ignore doc/notes.txt, but not doc/server/arch.txt.

❼ Ignore all .pdf files in the doc/ directory and any of its subdirectories.

Summary

With the first module done in summary the following commands and concepts have been

touched.

Item Description Resource

git init Initialize an empty directory or existing project man git-init

git add Add file to the staging area to be included in the next

commit.

man git-add

git commit Send files from the staging area to the object store. man git-commit

git status Display the status of the current working directory. man git-status

git mv Move files and directories. man git-mv

git rm Remove tracked files. man git-rm

git log Display the commit history of the repository. man git-log

git show Inspect various objects. man git-show

.gitignore Dot file to tell git which file / file patterns never to

track.

man gitignore

https://git-scm.com/docs/git-init
https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-show
https://git-scm.com/docs/gitignore

Module 3 - Remote repositories

Goals

Pretty soon after using git for the first time one encounters remote repositories. This module

shows the basics on how to interact with them. It is an introduction into the basic commands.

To avoid conflicts each student is creating their own repository and working from it.

• Download or clone a remote repository.

• Add content to the repository.

• Learn about origin.

• Push the changes.

• Pull changes made outside of the working directory.

Create a bare repo

Creating a bare repo is an advanced topic but for the purpose of working with a local shared

bare repository it is included. To distinguish bare repositories from local ones the naming

convention is to suffix it with .git.

git init

$ git init --shared --bare remote-repo.git ❶ ❷
Initialized empty shared Git repository in .../remote-repo.git/

❶ --shared specifies the Git repository can be shared amongst several users. Users

belonging to the same group may push into that repository.

❷ The naming convention for bare repositories is to suffix it with .git.

Working with remote repository

To create a local copy of a remote or shared repository the clone command is used.

In general one would clone a remote repository over a protocol like HTTPS or ssh. A shared

source tree can also reside on the local drive the syntax is only slightly different.

git clone

$ git clone remote-repo.git ❶ ❷
Cloning into 'remote-repo'...

warning: You appear to have cloned an empty repository.

done.

❶ The command to create a copy locally is clone. Generally a shared repository is suffixed

with a .git extension. The cloned directory is missing said suffix.

❷ To place the clone into a directory not named remote-repo append the name of the

desired destination. e.g. git clone remote-repo.git local-repo.

origin

When cloning a repository per default the configuration has 4 additions not seen in a simple

local repository. It is a remote URL alias as origin. While the name origin is not binding it

is the default and is rarely changed. This configuration is used when pushing changes back

into the shared directory.

$ git config --list

user.email=urs++git@bun.ch

user.name=Urs Roesch

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true

remote.origin.url=.../remote-repo.git ❶
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/* ❷
branch.main.remote=origin ❸
branch.main.merge=refs/heads/main ❹

❶ Compared to the initial configuration in the local repository there is new the

remote.origin.url values pointing to the shared repository’s URL. This can be a file

resource like in this case, http, ssh or git.

❷ Configures the mapping between the local and remote repository when git fetch is

issued.

❸ Sets the branch main for remote in this case it is called origin.

❹ Sets the merge branch when pulling from a repository.

To put this into perspective once more a peak into the .git repository helps. The tow

important sub-directories are colored the rest is grayed out.

For the remote repository a new directories in logs and refs have been created. They

correspond to the names already seen in the list of configuration items above. As before git is

keeping everything local a remote branch is only synced or updated from or to the shared

repository when the network commands such as push, fetch or pull are issued.

A clear understanding of how this mechanism works is key to comprehend how

git works with shared repositories over the network.

.git
branches
config
description
HEAD
hooks
applypatch-msg.sample
commit-msg.sample

...
info
exclude

logs
HEAD
refs
heads
master

remotes
origin
master

objects
info
pack

refs
heads
master

remotes
origin
master

tags

Figure 13. Remote branches in a .git directory highlighted in color.

git push

With the repository in place let’s populate it with content and send or the proper term for git is

push the changes back into the remote repository.

First off a commit must be in place.

$ echo 'First remote repository content!' > first_file.txt ❶
$ git add first_file.txt ❷
$ git commit -m 'Initial commit' ❸
[main (root-commit) 45d5290] Initial commit

 1 file changed, 1 insertion(+)

 create mode 100644 first_file.txt

$ git log --oneline

45d5290 (HEAD -> main) Initial commit

❶ Create a new file called first_file.txt.

❷ Add the file to the staging area.

❸ Commit the file to repository. Note at this stage nothing has been submitted to the remote

repository.

This is the same as for the local repository. As all the actions are done locally

there is no difference if you work with a remote repository.

With the commit in place the changes have to be pushed to the remote repository. This is

accomplished with git push.

$ git push

Counting objects: 3, done. ❶
Writing objects: 100% (3/3), 250 bytes | 250.00 KiB/s, done. ❷
Total 3 (delta 0), reused 0 (delta 0)

To .../remote-repo.git ❸
 * [new branch] main -> main ❹

❶ How come there are 3 objects for one commit? Actually there is the commit object, the tree

object and the blob one.

❷ The actual network operation of sending the data to the shared repository.

❸ Where did it send the objects to this is by default origin.

❹ Actions done are displayed in square brackets in this case [new branch]. Also which

branches are involved per default this is main for a new repository.

git fetch

Fetching is as the name states going to the shared repository and getting the data and putting

it into the local git repository.

To properly show the effect how this is works a second commit outside of the current working

repository has to be created. The below action is simulating a fellow git user with working on

the same repository.

$ cd ..

$ git clone remote-repo.git remote-repo2

Cloning into 'remote-repo2'...

done.

$ cd remote-repo2/

$ git log --oneline

45d5290 (HEAD -> main) Initial commit

$ echo "Second file" > second_file.txt

$ git add second_file.txt

$ git commit -m "Second commit"

[main 885f6c7] Second commit

 1 file changed, 1 insertion(+)

 create mode 100644 second_file.txt

$ git push

Counting objects: 3, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 290 bytes | 290.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To .../remote-repo.git

 45d5290..885f6c7 main -> main

$ cd ../remote-repo

After simulating the fellow git user and being back in the repo where the first commit was done

one can issue the git fetch command to get the changes from the shared repository.

$ git fetch

remote: Counting objects: 3, done. ❶
remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From .../remote-repo

 45d5290..885f6c7 main -> origin/main ❷

❶ Fetch is downlowding the missing objects from remote into the object store.

❷ The remote branch main is put into origin/main.

$ ls

first_file.txt ❶
$ git log --oneline

45d5290 (HEAD -> main) Initial commit ❷

❶ At this point second_file.txt is not appearing in the current branch main.

❷ If the repository has been fetched why does the main branch still show the initial commit?

Because fetch downloads all the objects from the shared repository and updated the HEAD

for origin/main but does not merge into the local repository. This is best shown with an

example.

$ git log origin/main ❶
commit 885f6c751abb430cb48c0903fcd82a2d35a77d25 (origin/main) ❷
Author: Urs Roesch <urs++git@bun.ch>

Date: Thu Sep 6 06:57:50 2018 +0200

 Second commit

commit 45d52900b73a5bd461cbaef2652b9d1ed8220b3b (HEAD -> main) ❸
Author: Urs Roesch <urs++git@bun.ch>

Date: Thu Sep 6 06:37:46 2018 +0200

 Initial commit

❶ Instead of simply showing the log of the current branch git log is instructed to display

from branch origin/main.

❷ With a decorated log one can see the head of origin/main is one commit ahead of the

current branch.

❸ Current branch HEAD points to the initial commit.

git merge

To bring the changed from the remote main branch into the working directory the merge

command is used.

$ git merge origin/main ❶
Updating 45d5290..885f6c7

Fast-forward

 second_file.txt | 1 + ❷
 1 file changed, 1 insertion(+)

 create mode 100644 second_file.txt

$ git log

commit 885f6c751abb430cb48c0903fcd82a2d35a77d25 (HEAD -> main, origin/main) ❸
Author: Urs Roesch <urs++git@bun.ch>

Date: Thu Sep 6 06:57:50 2018 +0200

 Second commit

commit 45d52900b73a5bd461cbaef2652b9d1ed8220b3b

Author: Urs Roesch <urs++git@bun.ch>

Date: Thu Sep 6 06:37:46 2018 +0200

 Initial commit

❶ The merge command expects a source where to merge from. In this case the remote

branch origin/main is used.

❷ The messages displayed during the merge are resembling the ones from the commit.

❸ Now HEAD and origin/main are in sync.

git pull

It seems an awful lot of typing for fetching and merging from remote repositories. But there is

a better way one can achieve the same with the push command.

To show this both HEAD and origin/main have been reset.

$ git log origin/main

commit 45d52900b73a5bd461cbaef2652b9d1ed8220b3b (HEAD -> main, origin/main)

Author: Urs Roesch <urs++git@bun.ch>

Date: Thu Sep 6 06:37:46 2018 +0200

 Initial commit

$ git pull

remote: Counting objects: 3, done. ❶
remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From .../remote-repo

 45d5290..885f6c7 main -> origin/main

Updating 45d5290..885f6c7

Fast-forward ❷
 second_file.txt | 1 +

 1 file changed, 1 insertion(+)

 create mode 100644 second_file.txt

❶ Section one is the same as with git fetch.

❷ The second part is verbatim to git merge.

Summary

Finally the summary of the module 3 for remote repositories with the commands in overview.

Item Description Resource

git clone Initialize an empty directory or existing project man git-clone

origin Sets the default location of the remote repository N/A

git push Send local changes to the shared repository. man git-push

git fetch Fetch objects from a shared repository. man git-fetch

git log

<repo>

Display logs from other repos without first checking it

out

man git-log

git merge Merge the difference between two branches. man git-merge

git pull Fetch and then merge changes into the current working

branch.

man git-pull

https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-fetch
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-pull

Module 4 - Visualizing and tracking changes

Goals

This module provides a deep dive into how to work show changes and differences between

certain commits or isolating files to changes. Further a view into who did change what will be

given.

• Use of the diff command.

• Use blame to find who’s done what change.

• Find strings in the tree with grep.

Display changed content

When working with a VCS one of the most important daily tasks is to evaluate changes made

during the course of time. Git provides a variety of tools to get the job done.

git diff

Diff’s list of options and switches is very lengthy so this part is only covering a tiny portions of

the possibilities at hand.

Executing git diff without any other parameters will show only changes between tracked

but yet unstaged files. So first a change needs to be made to an already tracked file.

$ echo 'second line in first file' >> first_file.txt ❶
$ cat first_file.txt ❷
First remote repository content!

second line in first file

$ git diff ❸
diff --git a/first_file.txt b/first_file.txt

index 697ffc4..f79ba9f 100644

--- a/first_file.txt

+++ b/first_file.txt

@@ -1 +1,2 @@

 First remote repository content!

+second line in first file

❶ Adding a new line to the tracked file first_file.txt by appending it on the command

line. Alternative one can edit the file interactively with a text editor.

❷ Confirming the content has been added with cat.

❸ Invoking git diff shows the changes in diff format. To explain the format at length is not

in scope of this tutorial. The important syntax is that a + in front of a line means and

addition and a - is a deletion.

As mentioned basic invocation of git diff only tracks changes in the working tree. To see

changes of staged files more options are required.

$ git add first_file.txt ❶
$ git diff ❷
$ git diff --cached ❸
diff --git a/first_file.txt b/first_file.txt

index 697ffc4..f79ba9f 100644

--- a/first_file.txt

+++ b/first_file.txt

@@ -1 +1,2 @@

 First remote repository content!

+second line in first file

❶ Adding the previously changed file to the stating area.

❷ Invoking the git diff shows no further changes are in the working directory.

❸ To show the changes in staging the --cached option is passed. The result from diff is now

identical as in the previous example.

Spinning this thread a bit further showing differences in a already commited file requires a

reference to a commit.

$ git commit -m "Second line in first file" ❶
[main 3fb25c5] Second line in first file

 1 file changed, 1 insertion(+)

$

urs@automatix:~/var/work/git-tutorial/remote-repo$ git diff HEAD~1 ❷
diff --git a/first_file.txt b/first_file.txt

index 697ffc4..f79ba9f 100644

--- a/first_file.txt

+++ b/first_file.txt

@@ -1 +1,2 @@

 First remote repository content!

+second line in first file

❶ Committing the files in stage.

❷ Invoking git diff using the HEAD~1 meaning show a diff between the HEAD and commit

prior to HEAD. This is nearly identical to git show with the exception that the commit

message is not shown.

To show only the summary of changes to the file one can use the --stat parameter already

shown in previous commands such as log or show.

$ git diff --stat HEAD~2 ❶
 first_file.txt | 1 +

 second_file.txt | 1 +

 2 files changed, 2 insertions(+)

❶ Again the diff command is set to work on HEAD and two commits prior to it. Stat is showing

the file names and changes including a summary at the end. Compared to log or show

however no further information is provided.

Where diff really shines tho is showing changes to a single file only.

$ git diff HEAD~2 second_file.txt ❶
diff --git a/second_file.txt b/second_file.txt

new file mode 100644

index 0000000..20d5b67

--- /dev/null

+++ b/second_file.txt

@@ -0,0 +1 @@

+Second file

❶ As before the last 2 commits are being considered but additionally at the end a file name is

provided. This limits the diff to only show changes in the last two commits for

second_file.txt.

Find who changed what

Sometimes it is important to know who changed what. For example when questions arise why

a change was commited or why something was implemented a certain way. And git has a tool

ready for that too.

git blame

While the name blame suggests an exercise in finger pointing it serves a much more useful

purpose than just pinning the blame on someone. The command works on a single file to show

which changes have been made at which revision.

While most of the git commands do not require additional parameters git blame requires a

file name to work with.

$ git blame first-file.txt

^8070030 (Urs Roesch 2018-10-06 13:06:01 +0000 1) First file ❶
2e97d380 (Linux Torvalds 2019-12-25 08:07:28 +0000 2) Second line ❷
e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 3) Third line ❸
e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 4) Fourth line

e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 5) Fifth line

00000000 (Not Committed Yet 2020-10-03 09:10:49 +0000 6) ❹
00000000 (Not Committed Yet 2020-10-03 09:10:49 +0000 7)

00000000 (Not Committed Yet 2020-10-03 09:10:49 +0000 8)

00000000 (Not Committed Yet 2020-10-03 09:10:49 +0000 9)

00000000 (Not Committed Yet 2020-10-03 09:10:49 +0000 10) Apologies, I lost count

❶ The first line in this example is also the initial commit of the repository and demarcate the

boundary of the blame. Boundaries prefix the SHA1 a caret symbol ^. For brevity the SHA1

hashes are cut at character 8. With option -l the whole hash is shown. The tabular output

format provides the following fields: <revision hash> (<commiter name>

<timestamp> <line number>) content

❷ Line two is a revision by a certain Linux Torvalds adding a single line to the file.

❸ Line 3 is also by a different committer called Junio C Hamano, this time the change adds

3 lines.

❹ Depicts a change not yet commited. Of note here is the SHA1 with all zeros and the

committer name of Not Commited Yet the time stamp is the time at command execution.

As with any git command there is a slew of additional options a few of the

more useful ones examined in the next few examples.

When only wanting to review changes starting at a particular revision the SHA1 can be

provided followed by two dots.

$ git blame 2e97d380.. -- first-file.txt

^2e97d38 (Linux Torvalds 2019-12-25 08:07:28 +0000 1) First file ❶
^2e97d38 (Linux Torvalds 2019-12-25 08:07:28 +0000 2) Second line

e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 3) Third line ❷
e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 4) Fourth line

e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 5) Fifth line ❸

❶ To note here is the first line is folded into the staring commit 2e97d380 although in the

previous example it was an independent commit. The caret symbol ^ demarcate the

boundary of such folded commits.

❷ In this example the only change made is the addition of the 3 lines by committer Junio C

Hamano.

❸ The keen observer the question is where are the lines not yet commited. When inspecting

changes between specific commits unstaged changes are not factored in.

While the previous example shows changes between a commit and the current HEAD the same

can be done between two arbitrary revisions.

$ git blame 80700303..2e97d380 -- first-file.txt

^8070030 (Urs Roesch 2018-10-06 13:06:01 +0000 1) First file ❶
2e97d380 (Linux Torvalds 2019-12-25 08:07:28 +0000 2) Second line ❷

❶ The first line here is the fist commit given as an option on the command line.

❷ Line two is the revision provided as the end point for the comparison.

There is also the option to view all changes up to certain revision. This is achieved by two dots

followed by the revision hash.

$ git blame ..2e97d380 -- first-file.txt

^8070030 (Urs Roesch 2018-10-06 13:06:01 +0000 1) First file ❶
2e97d380 (Linux Torvalds 2019-12-25 08:07:28 +0000 2) Second line ❷

❶ While the output is identical to the previous example the boundary for comparison is now

the initial commit.

❷ Line two is the revision provided as the end point for the comparision.

Instead of the fickle SHA1 hashes one can use tags e.g. git blame

v2.2.0.. — first-file.txt or the switch --since e.g. git blame

--since=3.weeks — first-file.txt

Another options is for limiting the comparision to a range of lines in the file with the switch -L.

$ git blame -L 2,4 first-file.txt

2e97d380 (Linux Torvalds 2019-12-25 08:07:28 +0000 2) Second line ❶
e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 3) Third line

e5149955 (Junio C Hamano 2020-01-04 11:08:45 +0000 4) Fourth line ❷

❶ The comparison starts at line 2 and since the revision boundary is outside of the limit no

caret symbol is shown. Of note is also the line numbers are absolute.

❷ Although the commit e5149955 spans 3 lines only the range defined on the command line

is displayed.

Locate patterns in files

Locating certain text patterns in a large repository can be daunting. But git grep provides

most of the options familiar from the Unix command grep tailored to work under the specifics

of a repository.

git grep

The basic usage is nearly identical to the Unix grep command. Simply prefixing it with git.

For brevity there is only a single file in the repository called first-file.txt.

$ cat first-file.txt

First file

Second line

Third line

Fourth line

Fifth line

$ git grep First

first-file.txt:First file ❶

❶ Like with grep operating on multiple files the result is prefixed with the file name the match

was located.

There is a way to limit the search to files matching a name pattern, not unlike normal grep.

However the syntax is slightly different as wildcards are required to be properly escaped.

$ cp first-file.txt first-file.copy ❶
$ git add first-file.copy ❷

$ git grep First

first-file.txt:First file

first-file.copy:First file ❸

$ git grep First -- '*.txt' ❹
first-file.txt:First file ❺

❶ Creating a copy of the existing text file with the extension .copy

❷ Adding the newly created file to the staging area.

❸ Executing the same command two result show up. Both commited changes and the ones in

the staging area.

❹ To limit the search to only files ending in .txt the shell escaped wildcards is used

'*.txt'.

❺ The result then only shows file matching the wildcard.

There is a way to include untracked files in the search by adding the --untracked switch.

$ echo "Second file" > second-file.txt ❶
$ git grep --untracked Second ❷
second-file.txt:Second file ❸

❶ Creating a new yet to be tracked file with content.

❷ Adding the --untracked switch to the git grep query includes all file under the git tree.

❸ Result now also includes the untracked files. There is however no visible queue for

untracked files.

Descending into a sub directory within the git tree limits the search to the files

under said sub directory.

Summary

With all the basic research tools under our belt here the summary of the commands.

Item Description Resource

git diff Find differences between staged changes, commits or

single files.

man git-diff

git blame Visualize who has changed which line in a commited

file.

man git-blame

git grep Search text strings in a files recursively. man git-grep

https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-blame
https://git-scm.com/docs/git-grep

Module 5 - Tags

Goals

An integral part of almost all VCS' is the feature of creating tags for release or milestones.

Under git to navigate the cryptic SHA1 messages can be quite daunting. Marking milestones,

and releases in a more human readable format can be archived with tags.

In git 3 types of tags exists lightweight, annotated and signed. This module is looking

mainly at lightweight and annotated ones. Signed tags are an advanced topic which requires

the use of GPG-keys which is considered out of scope for this tutorial.

• List tags with tag.

• Create tags with tag <name>.

• Remove tags with tag -d.

• Push tags to remote repositories using push --tags

• Delete tags in remote repositories.

List tags

Tags have their own git command aptly named tag. Issuing tag without any options list all

defined tags. The list of options for tag at least for lightweight and annotated tags is

comparatively small.

git tag

To show the current branch the command branch without any options or switches is invoked.

$ git tag ❶
v1.0.0 ❷
v1.1.0

❶ One can also append the switch -l or --list but the output stays the same.

❷ Tags are listed without any further information such as to which revision it points. The

name of the tags are arbitrary alpha numerical characters. But for version releases a

lowercase v followed by the version number is a widely followed convention.

v1.0.0

tag

aaa..

rev

bbb..

rev

v1.1.0

tag

ccc..

rev

HEAD

* master

branch

ddd..

rev

Figure 14. Example visualization of revisions, tags and branches in git.

Create tags

Creating tags for the current revision is very straight forward. The only additional option is to

provide a name for the tag.

When creating tags for older revisions the first few character of the SHA1 commit have to be

appended.

For annotated tags the option -m followed by a message is added.

git tag (create)

By default tags are created to point to the HEAD. The only additional option required is the

tag’s name.

$ git tag v1.3.0 ❶

❶ Creates tag with name v1.3.0 to the current revision (HEAD) the same.

v1.0.0

tag

aaa..

rev

bbb..

rev

v1.1.0

tag

ccc..

rev

v1.3.0

tag

ddd..

rev

HEAD

* master

branch

Figure 15. Git tree after adding the new new tag v1.3.0 to HEAD.

git tag (create → revision)

By default tags are created to point to the HEAD. The only additional option required is the

tag’s name. This way a tag can be added to a revision earlier in the tree for example if the

tagging was forgotten.

$ git tag v1.2.0 64b67952 ❶

❶ Creates tag with name v1.2.0 at revision 64b67952.

v1.0.0

tag

aaa..

rev

bbb..

rev

v1.1.0

tag

ccc..

rev

v1.2.0

tag

ddd..

rev

v1.3.0

tag

HEAD

* master

branch

Figure 16. Tag 1.2.0 was added to a revision prior to HEAD.

git tag (annotated)

By default tags are created to point to the HEAD. The only additional option required is the

tag’s name. This way a tag can be added to a revision earlier in the tree for example if the

tagging was forgotten.

$ git tag -a milestone_1 -m "This is the first milestone" ❶
$ git show milestone_1 ❷
tag milestone_1 ❸
Tagger: Urs Roesch <Urs Roesch>

Date: Sun Nov 8 17:17:17 2020 +0100

This is our first milestone ❹

commit 45a6088dd900e5363dddbb656360661adb94c1a1 (HEAD -> production, tag:

milestone_1) ❺
Author: Urs Roesch <Urs Roesch>

Date: Sun Nov 8 10:47:36 2020 +0100

 first-file: New milestone reached

❶ Creates an annotated tag named milestone_1 with a message.

❷ With the show command and argument milestone_1 the tag plus the referred commit is

shown.

❸ Displays the content of the tag object.

❹ Message provided during tag creation.

❺ The commit referred to by the tag.

v1.0.0

tag

aaa..

rev

bbb..

rev

v1.1.0

tag

ccc..

rev

v1.2.0

tag

ddd..

rev

v1.3.0

tag

eee..

rev

milestone_1

tag

fff..

ann.
tag

HEAD

* master

branch

Figure 17. Annotated tags point to a tag object which points to the revision.

Push tags

When pushing changes to a remote repository tags are not being transmitted. Some

automated workflows rely heavily on tags. In this rather short module the tat

git push

To push only tags to a remote repository the push command takes the switch --tags and will

then push to the default remote repository usually origin.

$ git push --tags ❶
Enumerating objects: 9, done. ❷
Counting objects: 100% (9/9), done.

Delta compression using up to 8 threads

Compressing objects: 100% (5/5), done.

Writing objects: 100% (7/7), 748 bytes | 748.00 KiB/s, done.

Total 7 (delta 0), reused 0 (delta 0), pack-reused 0

To https://github.com/octocatterpillar/git-tutorial.git

 * [new tag] milestone_1 -> milestone_1 ❸

❶ Issuing git push --tags pushes only tags to the remote repository.

❷ Standard push message.

❸ Pushed tags are listed one per line in a tabular format.

There is an options for push called --follow-tags which can be provided

during a normal push. Said option will only push annotated tags!

Delete tags

Deleting tags is as easy as creating them. Simply provide the -d switch before the tag name.

There is deletion of a lightweight tag and an annotated tag. Although they look exactly the

same on surface the difference is shown in the figure to each command.

Tags deleted locally which have already been pushed to a remote repository

will be downloaded again with the next fetch.

git tag (delete)

Simply using the -d minus switch one can delete a tag. A deleted tag can easily be recreated

as it simply a pointer to a certain revision.

$ git tag -d v1.1.0 ❶

❶ The -d switch will remove said tag.

v1.0.0

tag

aaa..

rev

bbb..

rev

v1.2.0

tag

ccc..

rev

ddd..

rev

v1.3.0

tag

eee..

rev

milestone_1

tag

fff..

ann.
tag

HEAD

* master

branch

Figure 18. The git tree after removing tag v1.1.0.

git tag (delete → annotated)

Deleting a annotated tag does in no way differ from the the command used for the lightweight

tag. Internally the reference file to the revision is removed for the lightweight tag. For an

annotated tag the reference file to the tag object is remove only. The tag object is made an

orphan.

$ git tag -d v1.1.0 ❶

❶ The same syntax applies for both lightweight and annotated tags.

v1.0.0

tag

aaa..

rev

bbb..

rev

v1.2.0

tag

ccc..

rev

ddd..

rev

v1.3.0

tag

eee..

rev

fff..

ann.
tag

HEAD

* master

branch

Figure 19. The tag has vanished but the tag object remains.

Summary

Tags are a big help in locating important milestones and releases and easy navigating a

repository without constant lookup of hashes.

Item Description Resource

git tag Create and manage tags. man git-branch

git push Push tag changes to a remote repository. man git-push

https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-push

Module 6 - Branches

Goals

One of the defining concepts of git from the outset was to provide cheap and fast branching of

a repository. How to branch a repository and how rebase with changes that occur outside of

the branch.

• Show branches in repository with branch.

• Create new branches with checkout -b.

• Delete branches with branch -d or branch -D

• Use rebase to keep branches up to date.

• Rename branches with branch -m.

• Solve merge conflicts.

Show branches

Per default with git init a branch named main is created. The main branch is just a

convenience name pointing to a SHA1 revision.

The main branch can be renamed or deleted as it does not have any relevance

to git. It is just an alias.

git branch

To show the current branch the command branch without any options or switches is invoked.

$ git branch

* main ❶

❶ The currently active branch is prefixed with an asterisk *. As there is only one branch

present in the repository this is not instantly visible. As the module progresses the

difference becomes more obvious.

HEAD

* master

ccc..

third
commit

aaa..

root
commit

bbb..

second
commit

Figure 20. Repository with 3 commits and branch main pointing to revision ccc...

Create a new branch

One of the stated goals of the git creator Linus Torvalds was to make branching as cheap and

easy as possible. When working with large repositories and many contributors branching is a

necessity. But with a good understanding and a bit of practice it quickly become second

nature.

git branch

To create a new branch one the branch is used followed by the name of the new branch.

$ git branch testing ❶
$ git branch

* main ❷
 testing

$ git checkout testing ❸
Switch to branch 'testing'

$ git branch

 main

* testing ❹

❶ During branch creation the HEAD of currently active branch is used as initial pointer.

❷ main is still the current branch. The previous command only created the new branch but

did not switch to it.

❸ Using the checkout command we move the HEAD to branch testing

❹ Now testing is the current working branch visible by the prefixed asterisk *.

Branch names can contain the Unix directory separator / for grouping

changes e.g. bugfix/ticket-123 or release/v1.2.3.

There is a shortcut for creating and switching to the newly minted branch all at

once. The command git checkout -b <branchname> will achieve the

same as git branch <branchname> followed by git checkout

<branchname>.

HEAD

master

ccc..

third
commit

* testing

aaa..

root
commit

bbb..

second
commit

Figure 21. After creation of branch main and testing pointing to the same revision.

git add & commit

When adding a new commit under branch testing the pointer moves to the latest revision.

$ echo 'Branched file' > branched-file.txt ❶
$ git add branched-file.txt

$ git commit -a -m "First file under branch testing" ❷
[testing 4b9b86d] First file under branch testing

 1 file changed, 1 insertion(+)

 create mode 100644 branched-file.txt

❶ Working under branch testing a new file is created.

❷ File is added and commited. Noteworthy, there is no visual hint from the commit command

that this is branch testing.

master

ccc..

third
commit

ddd..

fourth
commit

* testing

HEAD

aaa..

root
commit

bbb..

second
commit

Figure 22. With the new commit the testing pointer moved to the new commit.

Working with multiple branches

For this section the assumption is made that that there is a bug in the current main branch

that has not been addressed under testing as it is used to develop new features. To fix the

bug a new branch is created called bugfix starting out with the same revision as main.

git checkout

To move between branches once more the checkout command followed by the branch name

is issued.

$ git checkout main

Switched to branch 'main'

$ git branch

* main ❶
 testing

❶ main is now again the current branch being prefixed with the asterisk.

Since git version 2.23 the switch command can be used instead of

checkout. To create a new branch git switch --create <branch

name> is used. The short option for --create is -c. With git switch - one

can toggle between current and last used branch. This is not unlike cd -

under the Bash shell.

HEAD

* master

ccc..

third
commit

ddd..

fourth
commit

testing

aaa..

root
commit

bbb..

second
commit

Figure 23. Moving back to main the HEAD is now again at commit ccc….

git checkout -b

With the HEAD back on commit ccc.. the new branch bugfix is created.

$ git checkout -b bugfix ❶
Switched to a new branch 'bugfix'

$ git branch

* bugfix ❷
 main

 testing

❶ Create a new branch called bugfix

❷ Branch bugfix is now the HEAD.

HEAD

master

ccc..

third
commit

* bugfix

ddd..

fourth
commit

testing

aaa..

root
commit

bbb..

second
commit

Figure 24. After checking out bugfix it points to the same revision as main.

git commit

With branch bugfix created and checked out the fix is developed and commited.

$ git diff

diff --git a/first-file.txt b/first-file.txt

index 4c5fd91..aa24abd 100644

--- a/first-file.txt

+++ b/first-file.txt

@@ -1 +1 @@

-First file

+First file with bugfix ❶
$ git commit -a -m "Bugfix for first file"

[bugfix a27a927] Bugfix for first file

 1 file changed, 1 insertion(+), 1 deletion(-)

❶ The first line in first-file.txt has been modified adding with bugfix to the first

line.

aaa..

root
commit

bbb..

second
commit

ccc..

third
commit

master

eee..

fitfh
commit

* bugfix

HEAD

ddd..

fourth
commit

testing

Figure 25. With the new commit to bugfix the branches start diverging.

Merging branches

With the bug fix in place the task is to merge it back into the main branch So other users could

can use it as well. Assuming the main branch is then pushed to a remote repository that is.

git merge

Merge is described a replaying the changes of a named commit (aka branch) to a another

branch since they diverged. For this to work one changes first to the target branch. In this

case this is bugfix changes are to be replayed to main. As the target is main the first step is

to change to that branch.

$ git checkout main ❶
Switched to branch 'main'

$ git branch

* main ❷
 testing

$ git merge bugfix ❸
Updating e303af7..a27a927

Fast-forward

 first-file.txt | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

❶ Switch to the target branch (main).

❷ Confirm being on the target branch. This step is optional.

❸ Replay or merge the changes from bugfix into main.

aaa..

root
commit

bbb..

second
commit

ccc eee..

third
commit

bugfix

* master

HEAD

ddd..

fourth
commit

testing

fitfh
commit

Figure 26. After the merge bugfix and main point to the same revision.

git branch -d

There is no reason to keep the bugfix branch around now that the changes have been

incorporated into main. With the branch -d <branchname> command the branch is

deleted.

$ git branch

 bugfix

* main ❶
 testing

$ git branch -d bugfix ❷
Deleted branch bugfix (was a27a927).

$ git log --oneline -n 1

a27a927 (HEAD -> main) Bugfix for first file ❸

❶ The branch cannot be delete when checked out. Active branch is main which will work for

deletion of bugfix.

❷ Branch is deleted and the output contains the short SHA1 hash.

❸ Checking with git log confirms main points to the same hash as bugfix was.

aaa..

root
commit

bbb..

second
commit

ccc eee..

third
commit

* master

HEAD

ddd..

fourth
commit

testing

fitfh
commit

Figure 27. With the bugfix branch deleted only main and testing remains.

Rebasing branches

With the bug fix merged into branch main the next logical step is to fold the changes into the

testing branch to ensure the next release does include the fixed version. When working with

multiple branches this operation is required to not fall back to far with main and preventing

lots of merge conflicts.

git rebase

Rebasing is shifting the parent commit of the first change in the branch and attach it to the

current pointer of the branch or commit given on the command line as argument. In the below

example we the first action is to change to the branch to rebase and then issue the rebase

command against main.

$ git branch ❶
* main

 testing

$ git checkout testing ❷
Switched to branch 'testing'

$ git rebase main ❸
Successfully rebased and updated refs/heads/testing. ❹

❶ Currently on branch main, required to change to testing prior to the rebase.

❷ Switch to branch testing which will be rebased with main.

❸ Issue rebase command with argument main the branch or pointer used for the rebase.

❹ The message is terse and refers to the git internal file structure under the .git directory.

Conducting a rebase between two branches requires a common ancestor in the

tree.

master

eee..

fifth
commit

ddd..

fourth
commit

* testing

HEAD

aaa..

root
commit

bbb..

second
commit

ccc..

third
commit

Figure 28. After the rebase; main and testing are again in sync.

Renaming branches

As learned earlier branches are just arbitrary names pointing to a revision within the git tree.

As such renaming is a very painless and fast operation. No files have to be copied just the

reference requires an update.

git branch -m

The -m option together with the branch command moves a branch or more appropriately

renames the branch to the desired new name. Renaming can be from outside of the branch by

first providing the current branch name followed by the desired branch name. In this example

switching the branch first before issuing the branch -m command is used.

$ git branch ❶
* main

 testing

$ git checkout testing ❷
Switched to branch 'testing'

$ git branch -m production ❸
$ git branch

 main

* production ❹

❶ Currently on branch main, required to change to testing prior the rename.

❷ Switch to branch testing which will be renamed thereafter.

❸ Issue the -m move command with new branch name production. In true Unix fashion git

does not output any message. Alternatively the command git branch -m testing

production can be used instead of the 4 commands here.

❹ Branch testing is now called production.

master

eee..

fifth
commit

ddd..

fourth
commit

* production

HEAD

aaa..

root
commit

bbb..

second
commit

ccc..

third
commit

Figure 29. Structurally there is no change other then the branch name now being production.

Resolving merge conflicts

A merge conflict is a situation where the same file has been modified by one or more person at

the same location in the file. Generally git does an excellent job working around merge

conflicts. But occasionally during merge or rebase operations git interrupts and requires

human intervention to solve a conflict between two revisions.

As a general rule many merge conflicts can be prevented or minimized by:

• Communicating changes between team members regularly.

• Regular rebases with the merge target branch.

• Creating small and atomic commits.

git commit (conflict)

To show a merge conflict the first thing to do to change the same file in two different branches

and then rebase both branches.

Edit file first-file.txt under branch main.

$ git checkout main ❶
Switched to branch 'main'

$ vi first-file.txt ❷
$ cat first-file.txt

First file with bugfix from branch "main" ❸
$ git commit -m "first-file: Add from 'main'" first-file.txt ❹
[main 64b6795] first-file: Add from 'main'

 1 file changed, 1 insertion(+), 1 deletion(-)

❶ Switch to branch main.

❷ Edit file first-file.txt and append from "main" to the first line.

❸ Confirm output with cat or git diff.

❹ Commit change.

Edit file first-file.txt under branch production.

$ git checkout production ❶
Switched to branch 'production'

$ vi first-file.txt ❷
$ cat first-file.txt ❸
First file with bugfix from branch "production"

$ git commit -m "first-file: Add from 'production'" first-file.txt ❹
[production bdfdc4a] first-file: Add from 'production'

 1 file changed, 1 insertion(+), 1 deletion(-)

❶ Switch to branch production.

❷ Edit file first-file.txt and append from "production" to the first line.

❸ Confirm output with cat or git diff.

❹ Commit change.

aaa..

root
commit

bbb..

second
commit

ddd..

fourth
commit

* production

HEAD

ccc..

third
commit

master

Figure 30. There are now new commits in both main and production.

git rebase (conflict)

With the conflicting changes in place a rebase of branch production with branch main is

initiated. Unlike in the rebase example before git is not able to resolve the differences in the

file and interrupts the rebase process.

$ git rebase main

Auto-merging first-file.txt ❶
CONFLICT (content): Merge conflict in first-file.txt ❷
error: could not apply bdfdc4a... first-file: Add from 'production'

Resolve all conflicts manually, mark them as resolved with ❸
"git add/rm <conflicted_files>", then run "git rebase --continue".

You can instead skip this commit: run "git rebase --skip".

To abort and get back to the state before "git rebase", run "git rebase --abort".

Could not apply bdfdc4a... first-file: Add from 'production'

❶ Notice that first-file.txt will be automatically merged as both branches have

changes in this file. If the changes were in different parts of the file auto merge would

merge and continue.

❷ A conflict was detected in file first-file.txt. If more than one file runs into merge

conflicts they will be listed as well.

❸ Git instructions how to proceed. Either resolve the conflict and then the git commands to

use to continue with the rebase. Or simply skip the change. At this point it is up to the

person behind the keyboard to make a decision how to proceed.

Inspecting the current environment

$ git branch ❶
* (no branch, rebasing production) ❷
 main

 production

❶ Issue git branch to see the current state of git.

❷ During the rebase an unamed branch is created for conducting the merge operation this

branch is aptly named (no branch, rebasing production). The branch will

disappear after the rebase has concluded.

Inspecting the file with the merge conflict.

$ cat first-file.txt ❶
<<<<<<< HEAD ❷
First file with bug fix from branch "main" ❸
======= ❹
First file with bug fix from branch "production" ❺
>>>>>>> bdfdc4a... first-file: Add from 'production' ❻

❶ The contents of the file first-file.txt was modified by the git merge operation and

has to be modified before continuing.

❷ The line starting with <<<<<<< HEAD refers to the version found in the revision from

branch main

❸ Lists one or more lines of the conflicting changes with content from main.

❹ Delimiter, below the changes from branch production start.

❺ List one or more lines of the conflicting changes with content from production.

❻ The SHA1 and commit message of the change causing the conflict.

Manually edit file (conflict)

A conflict can be resolved by editing the file in question and a decision is made for each line

with a conflict which one to pick. This strategy is recommended when neither the version from

HEAD in this case main nor the one from the to be merged revision in this case production

can be used.

$ vi first-file.txt ❶
$ cat first-file.txt

First file with bugfix from branch "main" and from "production" ❷
$ git add first-file.txt ❸
$ git rebase --continue ❹
❺
[detached HEAD 7c857af] first-file: Add from 'main' and 'production'

 1 file changed, 1 insertion(+), 1 deletion(-)

Successfully rebased and updated refs/heads/production.

$ git branch

 main

* production ❻

❶ Edit the file to be merged.

❷ All the metadata about the merge conflict has been removed and the conflicting line has

been modified to contain both changes.

❸ As mentioned in the instruction when the conflict occurred the next after resolving the

conflict is to add the modified file to staging.

❹ And then continue with the rebase.

❺ Due to the manual changes made an interactive commit session pops up. One can change

the commit message if desired.

❻ The temporary branch has is gone an the branch production is the HEAD again.

master

ccc..

third
commit

eee..

fifth
commit

ddd..

fourth
commit

(orphan)

* production

HEAD

aaa..

root
commit

bbb..

second
commit

Figure 31. There is an orphan commit ddd… and a new one eee… with parent ccc….

git checkout --theirs (conflict)

A different merge strategy is to use the file from production and discard the changes from

the main. In the end the process and how the git tree ends up looks eventually the same as

for the manual process but the content of the file is different.

To use the version from branch production checkout is issued with switch --theirs.

$ git checkout --theirs -- first-file.txt ❶
$ cat first-file.txt

First file with bugfix from branch "production" ❷
$ git add first-file.txt ❸
$ git rebase --continue ❹
❺
[detached HEAD 45a6088] first-file: Add from 'production'

 1 file changed, 1 insertion(+), 1 deletion(-)

Successfully rebased and updated refs/heads/production.

$ git branch

 main

* production ❻

❶ Use the checkout function with switch --ours and the file name to be checked out from

HEAD.

❷ The file’s content is now the same as the one from branch main.

❸ As mentioned in the instruction when the conflict occurred the next after resolving the

conflict is to add the modified file to staging.

❹ And then continue with the rebase.

❺ With the --theirs option the file’s content compared to the version of main is being

modified. A new commit is required and the user is prompted to modify the commit

message if so desired.

❻ The temporary branch has is gone and the branch production is the HEAD again.

master

ccc..

third
commit

eee..

fifth
commit

ddd..

fourth
commit

(orphan)

* production

HEAD

aaa..

root
commit

bbb..

second
commit

Figure 32. There is an orphan commit ddd… and a new one eee… with parent ccc….

git checkout --ours (conflict)

A different merge strategy is to use the file from main and discard the changes from the

production commit. This could be done by editing the file manually as shown before which

in case of the task at hand with only one line certainly is an option. However if the merge

conflict is hundreds of lines scattered throughout the file it is a daunting and error prone task.

The git command checkout has an option called --ours to use use the version currently

present in HEAD.

$ git checkout --ours -- first-file.txt ❶
$ cat first-file.txt

First file with bugfix from branch "main" ❷
$ git add first-file.txt ❸
$ git rebase --continue ❹
Successfully rebased and updated refs/heads/production.

$ git branch

 main

* production ❺

❶ Use the checkout function with switch --ours and the file name to be checked out from

HEAD.

❷ The file’s content is now the same as the one from branch main.

❸ As mentioned in the instruction when the conflict occurred the next after resolving the

conflict is to add the modified file to staging.

❹ And then continue with the rebase.

❺ The temporary branch has is gone and the branch production is the HEAD again.

master

ccc..

third
commit

* productionddd..

fourth
commit

(orphan)

HEAD

aaa..

root
commit

bbb..

second
commit

Figure 33. Both branches main and production point to ccc… and ddd… became an orphan.

Summary

Branching is a important concept in git for further reading With all the basic research tools

under our belt here the summary of the commands.

Item Description Resource

git branch Create and manage branches. man git-branch

git checkout Switch and create new branches. man git-checkout

git rebase Keep branches up to date with external changes. man git-blame

https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-checkout
https://git-scm.com/docs/git-blame

Module 7 - Customizing git commands

Goals

In true Unix fashion git can be customized to suit one’s need. There is the option of creating

aliases for often used commands or creating custom git commands in one’s favorite language.

• Create command short cuts.

• Deleting aliases.

• Configure aliases for often used commands.

• Solve complex recurring workflows with custom git scripts.

Command shortcuts

For some the git commands such as checkout are too cumbersome to type each time what if

one could shorten that to say co like on subversion.

git config alias

Aliases are put in place with the config command and can be local, global or system wide.

For this exercise the global scope is used as it makes the most sense. Convenience settings

are best shared among more than just one repository.

$ git config --global alias.co checkout ❶
$ git config --global alias.ci commit

$ git config --global alias.br branch

$ git config --global alias.st status

$ git st --short ❷
A second-file.txt

❶ The alias is defined as a single command.

❷ The alias for status can be invoked with options.

While simple alias shortcuts are certainly useful one can also create aliases containing some of

the rather long options.

$ git config --global alias.lol 'log --oneline --no-decorate' ❶
$ git config --global alias.top 'log -n 3 HEAD' ❷

$ git lol

49b7a9c The rest ❸
e514995 Third line

2e97d38 Second line

8070030 First commit

❶ When using a command plus options enclose in quotes.

❷ Besides options keywords such as HEAD can also be used.

❸ Executes previously defined alias git log --oneline --no-decorate.

To modify an alias one can simply use the same command as when creating it.

$ git config --global alias.top 'log -n 1 HEAD' ❶

$ git top

commit 49b7a9cf2a8f1ae6ba94141268716ba0b07949d6 (HEAD -> main)

Author: Urs Roesch <github@bun.ch>

Date: Tue Nov 3 05:23:49 2020 +0000

 The rest

❶ Change from -n 3 to -n 1 to only show the most recent revision.

To remove an alias the switch --unset is used.

$ git config --global --unset alias.top ❶
$ git config --global --get-regex 'alias.*' ❷
alias.st=status

alias.lol=log --oneline --no-decorate

alias.co=checkout

alias.ci=commit

alias.br=branch

❶ Removing alias top with the --unset switch.

❷ Verifying the deletion of the alias top.

Complex aliases

Aliases in git can be more than just shortcuts for overly lengthy commands. One can cram

multiple commands into a single alias. This can be done by prefixing by starting the command

with an exclamation mark !.

git config alias

The first example does chain two git commands together for syncing a forked repository on

GitHub with the upstream repository.

$ git config --global alias.sync-upstream \

 '!sh -x -c "git fetch upstream && git rebase upstream/main main"' ❶

$ git sync-upstream

+ git fetch upstream ❷
From https://github.com/sample/repository ❸
 41cc734..1bd94bb main -> upstream/main

 * [new tag] v1.60 -> v1.60

+ git rebase upstream/main main ❹
Current branch main is up to date. ❺

❶ Execution a shell command that contains two git commands the first fetches that new

changes from the previously configured remote name upstream and the second runs a

rebase between upstream/main and the local main branch.

❷ When executing the alias. First the fetch triggers.

❸ In this instance the fetch finds a new tag.

❹ The second command is invoked rebasing with main.

❺ Command output from the rebase command.

While the above example is fairly sophisticate there is no way to pass parameters to the alias.

With the next sample a list of files is passed to the vi editor and when finished editing the files

are added to staging area.

$ git config --global alias.vi '!sh -x -c "vi \"$@\" && git add \"$@\""' ❶

$ git vi second-file.txt

+ vi second-file.txt ❷
+ git add second-file.txt

❶ Enclosing the command in single quotes and adding the optional switch -x to visualize the

commands being executed.

❷ Visualizing the commands executed due to the -x.

The sky is the limit! If a difficult operation can be put into a simple alias go for it.

Custom commands

For some task even a complex alias is not cutting it! For such instances there is the option of

creating a custom command. Any programming language available on the system can be used

to do so. To integrate the newly minted command into git the script must be named git-

<command> and be placed in a directrory included in $PATH.

git opush (bash script)

The script sampled below implements the command opush a shortcut for push origin

<branch> and push --tags While this can be implemented easily with an alias there are a

few security precaution like not pushing the main branch as the switches --force and

--remove could wipe out the main branch of the remote repository.

#!/usr/bin/env bash

Small script to push upstream without a fuss

Setup

set -o errexit

set -o nounset

set -o pipefail

check bash version compatiblity requires 4.2 or better

shopt -u compat41 2>/dev/null || {

 echo -n "\nBash Version 4.2 or higher is required!\n";

 exit 127;

}

Globals

declare -r SCRIPT=${0##*/}

declare -r VERSION=0.6.1

declare -r AUTHOR="Urs Roesch <github@bun.ch>"

declare -r LICENSE="GPLv2"

declare -g FORCE=""

declare -g BASE=""

declare -g REMOVE=""

declare -a DEFAULT_BASES=(master main)

Functions

function usage() {

 local exit_code=${1:-1}

 cat <<USAGE

 Usage:

 ${SCRIPT/-/ } [options]

 Opttions:

 -h | --help This message

 -f | --force Force a push to upstream

 -r | --remove Remove the repository from upstream

 -b | --base Set the default base branch

 Default: 'main' or 'master'

 -V | --version Display version and exit

 Description:

 Origin push to upstream without a fuss. Exludes pushes to master/main.

USAGE

 exit ${exit_code}

}

function parse_options() {

 while [[${#} -gt 0]]; do

 case ${1} in

 -h|--help) usage 0;;

 -b|--base) shift; BASE=${1};;

 -f|--force) FORCE="true";;

 -r|--remove) REMOVE="true";;

 -V|--version) version;;

 -*) usage 1;;

 esac

 shift

 done

}

function version() {

 printf "%s v%s\nCopyright (c) %s\nLicense - %s\n" \

 "${SCRIPT/-/ }" "${VERSION}" "${AUTHOR}" "${LICENSE}"

 exit 0

}

function current_branch() {

 git rev-parse --abbrev-ref HEAD

}

function join_array() {

 local -- char=${1}; shift;

 local -a array=("${@}")

 printf -v string "%s${char}" "${array[@]}"

 echo "${string%${char}}"

}

function which_base() {

 [[-n ${BASE}]] && return 0

 # prefer master over main

 local pattern=$(join_array '|' "${DEFAULT_BASES[@]}")

 local -a branches=($(git branch | grep -oE "\<(${pattern})\>" | sort -r))

 BASE=${branches[0]:-}

}

function push_origin() {

 local branch=$(current_branch)

 if [[${branch} == ${BASE}]]; then

 echo "Not pushing ${BASE}!"

 exit 1

 fi

 git push ${FORCE:+-f} origin ${REMOVE:+:}${branch}

}

function push_tags() {

 git push --tags

}

Main

parse_options "${@}"

which_base

push_origin

push_tags

Placing the script git-opush under ${HOME}/bin wich is in the path one can execute with

git opush. In below case the command is invoked while under branch main.

$ git opush

Not pushing main!

Summary

Tags are a big help in locating important milestones and releases and help with navigating a

repository quickly.

Item Description Resource

git config Manage aliases and other configuration items. man git-config

https://git-scm.com/docs/git-config

	Git Version Control Tutorial
	Git Version Control Tutorial
	What is git
	Target audience
	Scope & Terminology
	Concepts
	File storage
	Location
	Integrity
	Content
	Stages
	Family tree

	Repositories
	Content
	Objects

	Getting help
	Commands
	Man pages
	Shell completion
	Websites

	Module 1 - Configuration
	Goals
	List git configuration
	Set contact information
	System, global and local?
	Useful configuration options
	Summary

	Module 2 - Local Repository
	Goals
	Create a local repository
	Staging files
	Commit files
	Move & remove files
	Inspecting log and objects
	Excluding files
	Summary

	Module 3 - Remote repositories
	Goals
	Create a bare repo
	Working with remote repository
	Summary

	Module 4 - Visualizing and tracking changes
	Goals
	Display changed content
	Find who changed what
	Locate patterns in files
	Summary

	Module 5 - Tags
	Goals
	List tags
	Create tags
	Push tags
	Delete tags
	Summary

	Module 6 - Branches
	Goals
	Show branches
	Create a new branch
	Working with multiple branches
	Merging branches
	Rebasing branches
	Renaming branches
	Resolving merge conflicts
	Summary

	Module 7 - Customizing git commands
	Goals
	Command shortcuts
	Complex aliases
	Custom commands
	Summary

